
CDM

Finite Fields and Codes

Klaus Sutner

Carnegie Mellon University

codes 2018/3/2 14:07

Outline 2

1 Codes

2 Linear Codes

1 Codes

� Linear Codes

Shannon’s Model 4

A message a is generated by some source, converted into a signal by the sender
(transmitter) which is sent over the channel. The receiver turns the signal into
a received message a′ which reaches the destination.

destinationsource sender receiverchannel

a a′s s′

Two major scenarios:

The channel is noiseless: s = s′.
Interesting question: how to protect against eaves-dropping, cryptography.

The channel is noisy: s ≈ s′.
Interesting question: how to recover the original message, coding theory.

Noisy Channels 5

The coder turns a message a is turned into a code c, which is sent over a noisy
channel.

noisy channel decoder
a c c+e a’

coder

At the other end, the decoder receives c′ = c+ e where e is the error
introduced by the channel (for the moment, don’t worry what exactly addition
means here).

It outputs a decoded message a′ which is hopefully identical to a. If only . . .

Symmetric Channels 6

Suppose we have an m-ary channel.

We assume that there is a single parameter p that describes error probabilities:
p is the probability that the channel will transmit any symbol a as a different
symbol b.

Thus the probability depends neither on a nor on b, it is uniform for all a 6= b.

The probability that a is wrongly transmitted is thus (m− 1)p.

The probability that a is correctly transmitted is 1− (m− 1)p.

We will always assume that p is small relative to m (see below). If not, the
problem is really one of channel design, not of coding theory.

We will not deal with insertions and deletions of symbols.

Binary Symmetric Channel 7

In particular in a binary channel we have

0

1

0

1

1− p

p

1− p

p

Block Codes 8

We will think of messages and codes as words over an alphabet Q:

a = a1a2 . . . ak

c = c1c2 . . . cn

We are mostly interested in the binary case Q = 2, but larger alphabets can be
handled similarly.

Useful Trick: We can always think of Q as being some finite field.

So a message and its code are just vectors of field elements. In particular in the
binary case we are just dealing with bit-vectors.

Errors 9

One advantage of the vector model is that we can model the error as just
another vector:

c 7→ c+ e

The key challenges are

Error Detection
Detect when e 6= 0 (and ask for a re-transmit).

Error Correction
Detect an error and correct it (by adding −e to the transmitted message).

Again, error detection and correction only work if the channel is reasonably well
behaved. In practice, the major bottleneck is usually the efficiency of the
decoder.

Codes 10

We have qk possible messages and need to assign a unique codeword to each.

Definition

A (q-ary) code is a subset C ⊆ Fn of size qk. Here k is the dimension of the
code and n is its length. Fn is the codespace. The elements of C are
codewords.

Fn

messages code

Coding and Decoding 11

Of course, equal cardinality of message space and code is not enough: we need
to worry about coding algorithms that translate a message x ∈ Fk into the
corresponding codeword f(x) ∈ Fn and decoding algorithms that go in the
opposite direction, and deal with errors.

As we will see, there is usually quite a bit of flexibility in assigning codewords
to messages; there is no magic connection between the two.

Before we talk about specific codes let’s look at some fundamental properties
of this setup.

Hamming Distance 12

There is a natural way to introduce geometry in the codespace K = Fn
q : we can

measure distances between points.

Definition

The Hamming distance between two vectors x,y ∈ K is defined by

dist(x,y) = |{ i | xi 6= yi }|

The weight (or support) of a vector x ∈ K is defined by

w(x) = |{ i | xi 6= 0 }|

Thus dist(x,y) = w(x− y).

Exercise

Check that d really is a metric.

Counting Errors 13

A basic error in the channel is thus represented by an error vector of weight 1:

e = (0, . . . 0, x, 0, . . . 0)

We can think of the channel as introducing a number of basic errors
sequentially.

An error vector of weight e is thus referred to as “e errors.” This makes perfect
sense in symmetric channels where each flip is independent and equally likely.

Goal: We would like simple codes that can correct reasonably
many errors, the more the merrier.

Strategy: The main strategy is also clear: we will used redundancy
to protect against errors. Alas, the details are complicated.

An Idiosyncrasy 14

In coding theory texts, when one says a code detects e errors, what is actually
meant is this:

For any codeword x and any error e of weight at most e:

one can tell that y = x+ e /∈ C, and

one can determine the weight of e from y.

Being able to determine whether some symbol sequence is a codeword or not is
still useful, but this terminology actually makes more sense.

Example 15

Suppose the received message c+ e winds up “between” two codewords at
distance 6.

codeword codeword

c + e

This transmission could be caused by an error of weight 2 or an error of weight
4. We can only detect errors of weight at most 3 in this case; we can correct
errors of weight at most 2.

Conditional Probabilities 16

Suppose we have an m-ary symmetric channel with (single) error probability
(m− 1)p.

The probability that y is received when x as been transmitted is

Pr[y | x] = pd(1− (m− 1)p)n−d

where d = dist(x,y).

As long as p < 1/m this function is sharply decreasing in d, so it is unlikely
that we will hit a y far away from x.

As already mentioned, if p is too large one has to redesign the channel.

Example: m = 3, n = 5, p = 0.1 and p = 0.01 17

1 2 3 4 5

0.2

0.4

0.6

0.8

This behavior is intuitively clear, but it never hurts to check the math.

Maximum Likelihood Decoding 18

If x is transmitted and y /∈ C is received the natural decoding strategy based
on Pr[y | x] is to find the codeword c ∈ C closest to y.

This makes sense in particular when this c is uniquely determined.

codeword

c + e

Balls and Errors 19

Suppose we have chosen a code C. We define the minimal distance of C to be

md(C) = min
(
dist(x,y) | x 6= y ∈ C

)

Thus a ball of radius md(C)− 1 around a codeword in C contains no other
points in C.

Proposition

If md(C) ≥ 2e then C detects e errors.

If md(C) ≥ 2e+ 1 then C corrects e errors.

Note the active voice; we really should have said: it is possible to
detect/correct–we don’t yet know how to do this efficiently.

Hamming Bound 20

Lemma (Hamming)

Suppose q-ary code C has size M , length n and corrects e errors. Then

M
e∑

i=0

(
n

i

)
(q − 1)i ≤ qn

Proof.

To see this, consider (necessarily disjoint) balls of radius e centered at x ∈ C.
The number of elements in a ball at distance i to the center is

(
n
i

)
(q − 1)i. 2

Note that the code size M is forced to be smaller when e becomes larger.

Example 1: Repetition Code 21

This is a bit embarrassing, but bear with me. Let Q = 2 and code

x 7→ (x, x, . . . , x︸ ︷︷ ︸
n

)

So the only codewords are 00 . . . 0 and 11 . . . 1.

A repetition code detects n− 1 errors.

More importantly, it corrects b(n− 1)/2c errors: we use a majority count to
determine the original codeword.

The obvious fatal problem with this is the low rate of transmission: the
codeword is n-times longer than the original message.

Example 2: Parity Check Code 22

For any Q, code

x 7→
(
x,
∑

xi
)

so that n = k + 1.

A parity check code detects 1 error.

Alas, it corrects none.

This may sound useless, but it is not: variants of this scheme are used in ISBN.

Example 3: Correcting One Error 23

Let q = 2 and k = 4.

We transmit 7 bits
c = (c1, c2, c3, c4, c5, c6, c7)

Here c3 = x1, c5 = x2, c6 = x3, c7 = x4 are the original message bits. Then
pick c1, c2, c4 such that

γ = c1 + c3 + c5 + c7 = 0

β = c2 + c3 + c6 + c7 = 0

α = c4 + c5 + c6 + c7 = 0

For decoding, calculate α, β and γ. If there is a single error then αβγ is the
binary expansion of the place where the error occurred. Nice hack.

Example 4: . . . and Detecting Two 24

The last code does not handle 2 errors in a civilized way: the following
codewords have identical 1-error and 2-error versions:

0 0 0 0 0 0 0 0 1 0 1 0 1 0

↓ ↓
0 0 0 0 0 1 0 = 0 0 0 0 0 1 0

To fix this problem we can add one more bit

c0 = c1 + c2 + c3 + c4 + c5 + c6 + c7

This extended code detects two errors (and still corrects one as before).

� Codes

2 Linear Codes

Using Algebra 26

So far, everything is a bit ad-hoc. Here comes the first real idea:

Definition

A linear code is a linear subspace C ⊆ K = Fn.

If C has dimension k we refer to it as an [n, k] code.

A generator matrix for C is a k by n matrix over Fq whose rows form a basis
for C.

It follows that C is the row space of G:

C = {xG | x ∈ K }

Example: [6, 3] Code 27

Let Q = 2, k = 3, n = 6 and

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


Then

x 7→ y = (x1, x2, x3, x2 + x3, x1 + x3, x1 + x2)

Decoding in the absence of errors is entirely trivial, but what if the decoder
receives y + e instead?

Code Space 28

Standard and Systematic Codes 29

We want the generator matrix to have full rank, which is easily accomplished
by insisting on the form

G = (Ik P)

where Ik is the identity matrix of order k (so G is in reduced echelon form).
Such codes are said to be in standard form. Alternatively, we can spread the
columns of Ik through G; this is called systematic form.

In standard form, one calls

the first k bits information symbols

the last n− k bits parity check symbols

In this sense all linear codes are parity check codes.

Parity Check Matrix 30

Let G = (Ik P) be the k × n generator matrix of a standard form [n, k] linear
code. Define the (n− k)× n matrix H by

H = (PT In−k)

Definition

H is the parity check matrix for code C.

The vector syn(x) = x ·HT is the syndrome of x.

Since we are working in characteristic 2 we have G ·HT = 0 so that

x ∈ C ⇐⇒ syn(x) = 0

and we can test membership in C via a simple matrix multiplication.

Example contd. 31

For the [6, 3] code from above we have

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


and

H =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1



In this case, the P -part of G is symmetric and thus invariant under transpose.

Dealing with Errors 32

Note that for our example code syn(y) = (s1, s2, s3) where

s1 = e2 + e3 + e4

s2 = e1 + e3 + e5

s3 = e1 + e2 + e6

So suppose syn(y) = (1, 0, 1). It follows that e = e2 and we can correct the
error by flipping the second bit.

Similarly we can handle all syndromes other than (1, 1, 1): we can correct all
1-bit errors.

Decoding 33

Decoding here hinges on the following observation (which is not hard to prove):

Claim

If (s1, s2, s3) 6= (1, 1, 1) there is a unique choice for such an error vector e (of
weight at most 1).

Alas, if (s1, s2, s3) = (1, 1, 1) all the following 3 weight 2 vectors work:
(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1).

In this case we can either ask for a retransmit, or we can simply pick one of the
3 possibilities–which will be right 1/3 of the time.

So? 34

How much have we gained?

If we transmit 3 bits in a symmetric binary channel with error probability
p = 0.001 the likelihood of no error is (1− p)3 = 0.997003, roughly 3 times
larger than a single error.

But if we use our [6, 3] code, the likelihood of a correct transmission is

(1− p)6 + 6(1− p)5p+ (1− p)4p2 = 0.999986

corresponding to s = 0, 0 < s < 1 and s = 1.

In improvement of roughly a factor of 200, but we have to send twice as many
bits.

Determining Minimum Distance 35

According to our definition the minimum distance is the least dist(x,y) where
x 6= y ∈ C. In a linear code we can do better.

Lemma

For a linear code we have

md(C) = min
(
w(x) | 0 6= x ∈ C

)

This may not look too impressive, but at least it yields a linear time method as
opposed to the obvious quadratic one that works for an any code.

Parity Check and Distance 36

Let H be the check matrix of linear code C with columns h1,h2, . . . ,hr.

Then for x = c+ e we have syn(x) = H eT =
∑

hiei.

This linear combination is 0 iff x ∈ C.

Hence we have the following alternative (and often superior) way to compute
the minimum distance.

Lemma

The minimum distance of C is the least d such that there exists a set of d
linearly dependent column vectors in H.

Orthogonality 37

Definition

For x,y ∈ Fn define the inner product

x · y =
∑

xiyi

Given a subset X ⊆ Fn define its orthogonal complement by

X⊥ = {y ∈ Fn | ∀x ∈ X (x · y = 0) }

This is similar to the notion of orthogonal complements in real spaces but the
geometry here is more complicated. E.g., it may happen that X⊥ = X. For
example, consider X = { (x1, x1, x2, x2, . . . , xk, xk) | x ∈ Fk

2 }.

Dual Codes 38

Recall that a code with a k × n generator matrix has a (n− k)× n parity
check matrix.

Here is a good way to think about check matrices: there are actually
generators for a closely related code.

Definition

Let C be a linear [n, k] code. The dual code is C⊥.

The dual code has dimension n− k.

The dual of the dual is the code: C⊥⊥ = C.

If C has generator matrix G then C⊥ has parity check matrix G.

If C has parity check matrix H then C⊥ has generator matrix H.

Decoding 39

How do we decode a linear code systematically?

Suppose c ∈ C is sent but x = c+ e is received.

Obviously it suffices to compute the error vector e.

Note that
x+ C = e+ C

so the error vector lies in the same coset as the received message. Since C is a
subgroup of the additive group of Fn, we can decompose Fn into n− k disjoint
cosets

a1 + C,a2 + C, . . . ,an−k + C

Definition

A coset leader is an element of the coset of minimal weight.

Coset Leaders 40

So if we want to do maximum likelihood decoding we should pick a minimum
weight vector in the coset, the coset leader, as the error vector.

Note that x and y are in the same coset iff they have the same syndrome:

syn(x) = syn(y) ⇐⇒ x− y ∈ C

So we have to precompute a minimum weight vector for each possible
syndrome.

Example Contd. 41

For our standard [6, 3] example we have the following coset leaders,
parametrized by syndrome (which is none other than the s-vectors from above):

syndrome leader
000 000000
001 000001
010 000010
100 000100
011 100000
101 010000
110 001000
111 001001, 010010, 100100

Standard Array 42

Ideally we would like to enumerate the code and the coset leaders

C = c1, c2, . . . , cq

E = e1, e2, . . . , er

and then store a r × q table, the so-called standard array, with ei + cj in
position i, j.

To decode we look up x = ei + cj and return cj as decoded message.

The problem is that q = pk and r = pn−k, so the table has size qn, the same
as the codespace (duh). Usually this is more information than we can store.

Also note that no one would actually store the table: one would then have to
search for x. Instead, one would hash the j index on the codespace.

Syndrome Decoding 43

As we have seen, the syndrome function is constant on each coset and differs
on each coset (if you like, the coset partition is just the kernel relation induced
by the syndrome function).

But then is suffices to store a syndrome table: for each syndrome store the
corresponding coset leader.

To decode x:

Compute s = syn(x).

Then look up the corresponding e.

Return x′ = x− e.

Reed-Solomon Codes 44

On occasion, a linear code may be described in a way that obscures linearity a
bit.

Suppose we have a field Fp. Given k field elements a0, . . . , ak−1 we can define
a polynomial Pa(t) ∈ Fp[t] by

Pa(t) = am−1t
m−1 + am−2t

m−2 + . . . a1t+ a0

We can evaluate this polynomial in n ≥ m places to obtain a code vector
c ∈ Fn

p .

Note that Pa and thus a can be reconstructed from c: a polynomial of degree
d is determined by its values in (at least) places: we can use Lagrange
interpolation.

Lagrange Interpolation 45

It’s Linear 46

To see that this is actually a linear code, recall Vandermonde matrices:

V (γ1, . . . , γm) =


1 γ1 γ2

1 . . . γn−1
1

1 γ2 γ2
2 . . . γn−1

2

1 γ3 γ2
3 . . . γn−1

3

...
...

...
. . .

...
1 γm γ2

m . . . γn−1
m



So this is an m× n matrix where each row is a geometric progression, and for
n = m we have determinant

∏
i<j(γj − γi).

Thus, if all the γi are distinct, the matrix has full rank.

So What? 47

Evaluation of Pa(t) in positions 0, 1, . . . , n− 1 is given by the linear map a ·W
where W is the transpose of the Vandermonde matrix V (0, 1, . . . , n− 1) (all to
be construed as field elements).

W =


1 1 1 . . . 1
0 1 2 . . . n− 1
02 12 22 . . . (n− 1)2

...
0k−1 1k−1 2k−1 . . . (n− 1)k−1



Analysis 48

Lemma

The Reed-Solomon code over Fp with parameters k ≤ n ≤ p has weight
n− k + 1.

Hence, choosing n = k + 2e the code corrects e errors.

Proof.

It suffices to find a polynomial that produces the weight n− k + 1:

t(t− 1)(t− 2) . . . (t− (k − 2))

2

Example 49

p = 13, k = 6, n = 9
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
0 1 4 9 3 12 10 10 12
0 1 8 1 12 8 8 5 5
0 1 3 3 9 1 9 9 1
0 1 6 9 10 5 2 11 8



For example,
Pa(5) = a0 + 5a1 + 12a2 + 8a3 + a4 + 5a5

Truth in Advertising 50

The real reason Reed-Solomon codes are interesting and heavily used is that
there is a fast decoding algorithm due to Berlekamp and Welch from 1983.

Alas, they decided to patent their algorithm. This is total insanity, patents
should not apply to

. . . laws of nature, natural phenomena, and abstract ideas.

These type of patents have one main function: to obstruct progress in the
interest of enriching the few. They are an abomination.

	Codes
	Linear Codes

