
CMU 15-251, Spring 2018
Great Ideas in Theoretical Computer Science

Course Notes: Condensed 1

April 4, 2018

Please send comments and corrections to Anil Ada (aada@cs.cmu.edu).

Foreword

These notes are based on the lectures given by Anil Ada and Klaus Sutner
for the Spring 2018 edition of the course 15-251 “Great Ideas in Theoretical
Computer Science” at Carnegie Mellon University. They are also closely
related to the previous editions of the course, and in particular, lectures
prepared by Ryan O’Donnell.

WARNING: The purpose of these notes is to complement the lectures.
These notes do not contain full explanations of all the material covered dur-
ing lectures. In particular, the intuition and motivation behind many con-
cepts and proofs are explained during the lectures and not in these notes.

There are various versions of the notes that omit certain parts of the
notes. Go to the course webpage to access all the available versions.

In the main version of the notes (i.e. the main document), each chapter
has a preamble containing the chapter structure and the learning goals. The
preamble may also contain some links to concrete applications of the topics
being covered. At the end of each chapter, you will find a short quiz for you
to complete before coming to recitation, as well as hints to selected exercise
problems.

Note that some of the exercise solutions are given in full detail, whereas
for others, we give all the main ideas, but not all the details. We hope the
distinction will be clear.

i

Acknowledgements

The course 15-251 was created by Steven Rudich many years ago, and we
thank him for creating this awesome course. Here is the webpage of an
early version of the course:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/.
Since then, the course has evolved. The webpage of the current version is
here:
http://www.cs.cmu.edu/~15251/.

Thanks to the previous and current instructors of 15-251, who have con-
tributed a lot to the development of the course: Victor Adamchik, Luis von
Ahn, Anupam Gupta, Venkatesan Guruswami, Bernhard Haeupler, John
Lafferty, Ryan O’Donnell, Ariel Procaccia, Daniel Sleator and Klaus Sutner.

Thanks to Eric Bae, Apoorva Bhagwat, George Cai, Darshan Chakrabarti,
Seth Cobb, Teddy Ding, Emilie Guermeur, Ellen Kim, Aditya Krishnan,
Xinran Liu, Udit Ranasaria, Matthew Salim, Ticha Sethapakdi, Vanessa Siri-
walothakul, Rosie Sun, Natasha Vasthare, Jenny Wang, Ling Xu, Ming Yang,
Wynne Yao, Stephanie You, Xingjian Yu and Nancy Zhang for sending valu-
able comments and corrections on an earlier draft of the notes. And thanks
to Parmita Bawankule, Dominic Calkosz and Deborah Chu for sending
valuable comments and corrections on the current draft.

Special thanks go to Ji An Yang, a former teaching assistant for 15-251,
for writing the solutions to the exercise problems in the chapter on proba-
bility theory.

ii

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/
http://www.cs.cmu.edu/~15251/

Contents

1 Strings and Encodings 1
1.1 Alphabets and Strings . 2
1.2 Languages . 2
1.3 Encodings . 3
1.4 Computational Problems and Decision Problems 4

2 Deterministic Finite Automata 5
2.1 Basic Definitions . 6
2.2 Irregular Languages . 7
2.3 Closure Properties of Regular Languages 7

3 Turing Machines 9
3.1 Basic Definitions . 10
3.2 Decidable Languages . 11

4 Countable and Uncountable Sets 13
4.1 Basic Definitions . 14
4.2 Countable Sets . 15
4.3 Uncountable Sets . 15

5 Undecidable Languages 17
5.1 Existence of Undecidable Languages 18
5.2 Examples of Undecidable Languages 18
5.3 Undecidability Proofs by Reductions 18

6 Time Complexity 19
6.1 Big-O, Big-Omega and Theta . 20
6.2 Worst-Case Running Time of Algorithms 20
6.3 Complexity of Algorithms with Integer Inputs 21

7 Stable Matchings 23
7.1 Stable Matchings . 24

8 Introduction to Graph Theory 25
8.1 Basic Definitions . 26
8.2 Graph Algorithms . 27

8.2.1 Graph searching algorithms 27
8.2.2 Minimum spanning tree 28
8.2.3 Topological sorting . 29

9 Matchings in Graphs 31
9.1 Maximum Matchings . 32

10 Boolean Circuits 35
10.1 Basic Definitions . 36
10.2 3 Theorems on Circuits . 36

iii

11 Polynomial-Time Reductions 39
11.1 Cook and Karp Reductions . 40
11.2 Hardness and Completeness . 41

12 Non-Deterministic Polynomial Time 43
12.1 Non-Deterministic Polynomial Time NP 44
12.2 NP-complete problems . 44
12.3 Proof of Cook-Levin Theorem . 45

13 Approximation Algorithms 47
13.1 Basic Definitions . 48
13.2 Examples of Approximation Algorithms 48

14 Probability Theory 51
14.1 Probability I: The Basics . 52

14.1.1 Basic Definitions . 52
14.1.2 Three Useful Rules . 53
14.1.3 Independence . 53

14.2 Probability II: Random Variables 53
14.2.1 Basics of random variables 53
14.2.2 The most fundamental inequality in probability theory . 55
14.2.3 Three popular random variables 55

15 Randomized Algorithms 57
15.1 Monte Carlo and Las Vegas Algorithms 58
15.2 Monte Carlo Algorithm for the Minimum Cut Problem 58

iv

v

Chapter 1

Strings and Encodings

1

1.1 Alphabets and Strings

Definition 1.1 (Alphabet, symbol/character).
An alphabet is a non-empty, finite set, and is usually denoted by Σ. The ele-
ments of Σ are called symbols or characters.

Definition 1.2 (String/word, empty string).
Given an alphabet Σ, a string (or word) over Σ is a (possibly infinite) sequence of
symbols, written as a1a2a3 . . ., where each ai ∈ Σ. The string with no symbols
is called the empty string and is denoted by ε.

Definition 1.3 (Length of a string).
The length of a string w, denoted |w|, is the the number of symbols in w. If w
has an infinite number of symbols, then the length is undefined.

Definition 1.4 (Star operation on alphabets).
Let Σ be an alphabet. We denote by Σ∗ the set of all strings over Σ consisting
of finitely many symbols. Equivalently, using set notation,

Σ∗ = {a1a2 . . . an : n ∈ N, and ai ∈ Σ for all i}.

Definition 1.5 (Reversal of a string).
For a string w = a1a2 . . . an, the reversal of w, denoted wR, is the string wR =
anan−1 . . . a1.

Definition 1.6 (Concatenation of strings).
If u and v are two strings in Σ∗, the concatenation of u and v, denoted by uv or
u · v, is the string obtained by joining together u and v.

Definition 1.7 (Powers of a string).
For a word u ∈ Σ∗ and n ∈ N, the n’th power of u, denoted by un, is the word
obtained by concatenating u with itself n times.

Definition 1.8 (Substring).
We say that a string u is a substring of string w if w = xuy for some strings x
and y.

1.2 Languages

Definition 1.9 (Language).
Any (possibly infinite) subset L ⊆ Σ∗ is called a language over the alphabet Σ.

2

Definition 1.10 (Reversal of a language).
Given a language L ⊆ Σ∗, we define its reversal, denoted LR, as the language

LR = {wR ∈ Σ∗ : w ∈ L}.

Definition 1.11 (Concatenation of languages).
Given two languages L1, L2 ⊆ Σ∗, we define their concatenation, denoted L1L2

or L1 · L2, as the language

L1L2 = {uv ∈ Σ∗ : u ∈ L1, v ∈ L2}.

Definition 1.12 (Powers of a language).
Given a language L ⊆ Σ∗ and n ∈ N, the n’th power of L, denoted Ln, is the
language obtained by concatenating L with itself n times, that is,1

Ln = L · L · L · · ·L︸ ︷︷ ︸
n times

.

Equivalently,

Ln = {u1u2 · · ·un ∈ Σ∗ : ui ∈ L for all i ∈ {1, 2, . . . , n}}.

Definition 1.13 (Star operation on a language).
Given a language L ⊆ Σ∗, we define the star of L, denoted L∗, as the language

L∗ =
⋃
n∈N

Ln.

Equivalently,

L∗ = {u1u2 · · ·un ∈ Σ∗ : n ∈ N, ui ∈ L for all i ∈ {1, 2, . . . , n}}.

1.3 Encodings

Definition 1.14 (Encoding of a set).
Let A be a set (which is possibly countably infinite2), and let Σ be a alphabet.
An encoding of the elements of A, using Σ, is an injective function Enc : A →
Σ∗. We denote the encoding of a ∈ A by 〈a〉.3

If w ∈ Σ∗ is such that there is some a ∈ A with w = 〈a〉, then we say w is a
valid encoding of an element in A.

A set that can be encoded is called encodable.4

1We can omit parentheses as the order in which the concatenation · is applied does not matter.
2We assume you know what a countable set is, however, we will review this concept in a future

lecture.
3Note that this angle-bracket notation does not specify the underlying encoding function as the

particular choice of encoding function is often unimportant.
4Not every set is encodable. Can you figure out exactly which sets are encodable?

3

1.4 Computational Problems and Decision Prob-

lems

Definition 1.15 (Computational problem).
Let Σ be an alphabet. Any function f : Σ∗ → Σ∗ is called a computational
problem over the alphabet Σ.

Definition 1.16 (Decision problem).
Let Σ be an alphabet. Any function f : Σ∗ → {0, 1} is called a decision problem
over the alphabet Σ. The codomain of the function is not important as long as
it has two elements. Other common choices for the codomain are {No,Yes},
{False,True} and {Reject,Accept}.

4

Chapter 2

Deterministic Finite Automata

5

2.1 Basic Definitions

Definition 2.1 (Deterministic Finite Automaton (DFA)).
A deterministic finite automaton (DFA) M is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set
(which we refer to as the alphabet of the DFA);

• δ is a function of the form δ : Q× Σ→ Q
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the start state);

• F ⊆ Q is a subset of Q
(which we refer to as the set of accepting states).

Definition 2.2 (Computation path for a DFA).
Let M = (Q,Σ, δ, q0, F) be a DFA and let w = w1w2 · · ·wn be a string over an
alphabet Σ (so wi ∈ Σ for each i ∈ {1, 2, . . . , n}). Then the computation path of
M with respect to w is a sequence of states

r0, r1, r2, . . . , rn,

where each ri ∈ Q, and such that

• r0 = q0;

• δ(ri−1, wi) = ri for each i ∈ {1, 2, . . . , n}.

We say that the computation path is accepting if rn ∈ F , and rejecting otherwise.

Definition 2.3 (A DFA accepting a string).
We say that DFA M = (Q,Σ, δ, q0, F) accepts a word w ∈ Σ∗ if the computation
path of M with respect to w is an accepting computation path. Otherwise, we
say that M rejects the string w.

Definition 2.4 (Extended transition function).
Let M = (Q,Σ, δ, q0, F) be a DFA. The transition function δ : Q × Σ → Q can
be extended to δ∗ : Q× Σ∗ → Q, where δ∗(q, w) is defined as the state we end
up in if we start at q and read the string w. In fact, often the star in the notation
is dropped and δ is overloaded to represent both a function δ : Q×Σ→ Q and
a function δ : Q× Σ∗ → Q.

6

Definition 2.5 (Language recognized/accepted by a DFA).
For a deterministic finite automaton M , we let L(M) denote the set of all
strings that M accepts, i.e. L(M) = {w ∈ Σ∗ : M accepts w}. We refer to
L(M) as the language recognized by M (or as the language accepted by M , or as
the language decided by M).1

Definition 2.6 (Regular language).
A language L ⊆ Σ∗ is called regular if there is a deterministic finite automaton
M such that L = L(M).

2.2 Irregular Languages

Theorem 2.7 (0n1n is not regular).
Let Σ = {0, 1}. The language L = {0n1n : n ∈ N} is not regular.

Theorem 2.8 (A unary non-regular language).
Let Σ = {a}. The language L = {a2n

: n ∈ N} is not regular.

2.3 Closure Properties of Regular Languages

Theorem 2.9 (Regular languages are closed under union).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∪ L2 is also regular.

Corollary 2.10 (Regular languages are closed under intersection).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∩ L2 is also regular.

Theorem 2.11 (Regular languages are closed under concatenation).
If L1, L2 ⊆ Σ∗ are regular languages, then the language L1L2 is also regular.

1Here the word “accept” is overloaded since we also use it in the context of a DFA accepting
a string. However, this usually does not create any ambiguity. Note that the letter L is also over-
loaded since we often use it to denote a language L ⊆ Σ∗. In this definition, you see that it can
also denote a function that maps a DFA to a language. Again, this overloading should not create
any ambiguity.

7

8

Chapter 3

Turing Machines

9

3.1 Basic Definitions

Definition 3.1 (Turing machine).
A Turing machine (TM) M is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set that does not contain the blank symbol t
(which we refer to as the input alphabet);

• Γ is a finite set such that t ∈ Γ and Σ ⊂ Γ
(which we refer to as the tape alphabet);

• δ is a function of the form δ : Q× Γ→ Q× Γ× {L,R}
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the initial state or starting state);

• qacc ∈ Q is an element of Q
(which we refer to as the accepting state);

• qrej ∈ Q is an element of Q such that qrej 6= qacc
(which we refer to as the rejecting state).

Definition 3.2 (A TM accepting or rejecting a string).
Let M be a Turing machine where Q is the set of states, t is the blank symbol,
and Γ is the tape alphabet.1 To understand howM ’s computation proceeds we
generally need to keep track of three things: (i) the state M is in; (ii) the con-
tents of the tape; (iii) where the tape head is. These three things are collectively
known as the “configuration” of the TM. More formally: a configuration for M
is defined to be a string uqv ∈ (Γ∪Q)∗, where u, v ∈ Γ∗ and q ∈ Q. This repre-
sents that the tape has contents · · ·tttuvttt· · · , the head is pointing at the
leftmost symbol of v, and the state is q. We say the configuration is accepting if
q is M ’s accept state and that it’s rejecting if q is M ’s reject state.2

Suppose that M reaches a certain configuration α (which is not accepting
or rejecting). Knowing just this configuration and M ’s transition function δ,
one can determine the configuration β that M will reach at the next step of the
computation. (As an exercise, make this statement precise.) We write

α `M β

and say that “α yields β (in M)”. If it’s obvious what M we’re talking about,
we drop the subscript M and just write α ` β.

Given an input x ∈ Σ∗ we say that M(x) halts if there exists a sequence of
configurations (called the computation trace) α0, α1, . . . , αT such that:

(i) α0 = q0x, where q0 is M ’s initial state;

(ii) αt `M αt+1 for all t = 0, 1, 2, . . . , T − 1;
1Supernerd note: we will always assume Q and Γ are disjoint sets.
2There are some technicalities: The string u cannot start with t and the string v cannot end

with t. This is so that the configuration is always unique. Also, if v = ε it means the head is
pointing at the t immediately to the right of u.

10

(iii) αT is either an accepting configuration (in which case we say M(x) ac-
cepts) or a rejecting configuration (in which case we say M(x) rejects).

Otherwise, we say M(x) loops.

Definition 3.3 (Decider Turing machine).
A Turing machine is called a decider if it halts on all inputs.

Definition 3.4 (Language accepted and decided by a TM).
LetM be a Turing machine (not necessarily a decider). We denote by L(M) the
set of all strings that M accepts, and we call L(M) the language accepted by M .
When M is a decider, we say that M decides the language L(M).

Definition 3.5 (Decidable language).
A language L is called decidable (or computable) if L = L(M) for some decider
Turing machine M .

Definition 3.6 (Universal Turing machine).
Let Σ be some finite alphabet. A universal Turing machine U is a Turing machine
that takes 〈M,x〉 as input, where M is a TM and x is a word in Σ∗, and has the
following high-level description:

M : Turing machine. x: string in Σ∗.
U(〈M,x〉):

1 Simulate M on input x (i.e. run M(x)).
2 If it accepts, accept.
3 If it rejects, reject.

Note that if M(x) loops forever, then U loops forever as well. To make sure
M always halts, we can add a third input, an integer k, and have the universal
machine simulate the input TM for at most k steps.

3.2 Decidable Languages

Definition 3.7 (Languages related to encodings of DFAs).
Fix some alphabet Σ. We define the following languages:

ACCEPTSDFA = {〈D,x〉 : D is a DFA that accepts the string x},
SELF-ACCEPTSDFA = {〈D〉 : D is a DFA that accepts the string 〈D〉},

EMPTYDFA = {〈D〉 : D is a DFA with L(D) = ∅},
EQDFA = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) = L(D2)}.

Theorem 3.8 (ACCEPTSDFA and SELF-ACCEPTSDFA are decidable).
The languages ACCEPTSDFA and SELF-ACCEPTSDFA are decidable.

Theorem 3.9 (EMPTYDFA is decidable).
The language EMPTYDFA is decidable.

Theorem 3.10 (EQDFA is decidable).
The language EQDFA is decidable.

11

12

Chapter 4

Countable and Uncountable Sets

13

4.1 Basic Definitions

Definition 4.1 (Injection, surjection, and bijection).
Let A and B be two (possibly infinite) sets.

• A function f : A → B is called injective if for any a, a′ ∈ A such that
a 6= a′, we have f(a) 6= f(a′). We write A ↪→ B if there exists an injective
function from A to B.

• A function f : A → B is called surjective if for all b ∈ B, there exists an
a ∈ A such that f(a) = b. We write A � B if there exists a surjective
function from A to B.

• A function f : A → B is called bijective (or one-to-one correspondence) if it
is both injective and surjective. We write A↔ B if there exists a bijective
function from A to B.

Theorem 4.2 (Relationships between different types of functions).
Let A,B and C be three (possibly infinite) sets. Then,

(a) A ↪→ B if and only if B � A;

(b) if A ↪→ B and B ↪→ C, then A ↪→ C;

(c) A↔ B if and only if A ↪→ B and B ↪→ A.

Definition 4.3 (Comparison of cardinality of sets).
Let A and B be two (possibly infinite) sets.

• We write |A| = |B| if A↔ B.

• We write |A| ≤ |B| if A ↪→ B, or equivalently, if B � A.1

• We write |A| < |B| if it is not the case that |A| ≥ |B|.2

Definition 4.4 (Countable and uncountable sets).

• A set A is called countable if |A| ≤ |N|.

• A set A is called countably infinite if it is countable and infinite.

• A set A is called uncountable if it is not countable, i.e. |A| > |N|.

Theorem 4.5 (Characterization of countably infinite sets).
A set A is countably infinite if and only if |A| = |N|.

1Even though not explicitly stated, |B| ≥ |A| has the same meaning as |A| ≤ |B|.
2Similar to above, |B| > |A| has the same meaning as |A| < |B|.

14

4.2 Countable Sets

Proposition 4.6 (Z× Z is countable).
The set Z× Z is countable.

Proposition 4.7 (Q is countable).
The set of rational numbersQ is countable.

Proposition 4.8 (Σ∗ is countable).
Let Σ be a finite set. Then Σ∗ is countable.

Proposition 4.9 (The set of Turing machines is countable).
The set of all Turing machines {M : M is a TM} is countable.

Proposition 4.10 (The set of polynomials with rational coefficients is count-
able).
The set of all polynomials in one variable with rational coefficients is countable.

4.3 Uncountable Sets

Theorem 4.11 (Cantor’s Theorem).
For any set A, |P(A)| > |A|.

Corollary 4.12 (P(N) is uncountable).
The set P(N) is uncountable.

Corollary 4.13 (The set of languages is uncountable).
Let Σ be a finite set with |Σ| > 0. Then P(Σ∗) is uncountable.

Definition 4.14 (Σ∞).
Let Σ be some finite alphabet. We denote by Σ∞ the set of all infinite length
words over the alphabet Σ. Note that Σ∗ ∩ Σ∞ = ∅.

Theorem 4.15 ({0, 1}∞ is uncountable).
The set {0, 1}∞ is uncountable.

15

16

Chapter 5

Undecidable Languages

17

5.1 Existence of Undecidable Languages

Theorem 5.1 (Almost all languages are undecidable).
Fix some alphabet Σ. There are languages L ⊆ Σ∗ that are not decidable.

5.2 Examples of Undecidable Languages

Definition 5.2 (Halting problem).
The halting problem is defined as the decision problem corresponding to the
language HALTS = {〈M,x〉 : M is a TM which halts on input x}.

Theorem 5.3 (Turing’s Theorem).
The language HALTS is undecidable.

Definition 5.4 (Languages related to encodings of TMs).
We define the following languages:

ACCEPTS = {〈M,x〉 : M is a TM that accepts the input x},

EMPTY = {〈M〉 : M is a TM with L(M) = ∅},

EQ = {〈M1,M2〉 : M1 and M2 are TMs with L(M1) = L(M2)}.

Theorem 5.5 (ACCEPTS is undecidable).
The language ACCEPTS is undecidable.

Theorem 5.6 (EMPTY is undecidable).
The language EMPTY is undecidable.

Theorem 5.7 (EQ is undecidable).
The language EQ is undecidable.

5.3 Undecidability Proofs by Reductions

Theorem 5.8 (HALTS ≤ EMPTY).
HALTS ≤ EMPTY.

Theorem 5.9 (EMPTY ≤ HALTS).
EMPTY ≤ HALTS.

18

Chapter 6

Time Complexity

19

6.1 Big-O, Big-Omega and Theta

Definition 6.1 (Big-O).
For f : R+ → R+ and g : R+ → R+, we write f(n) = O(g(n)) if there exist
constants C > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

In this case, we say that f(n) is big-O of g(n).

Definition 6.2 (Big-Omega).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Ω(g(n)) if there exist
constants c > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≥ cg(n).

In this case, we say that f(n) is big-Omega of g(n).

Definition 6.3 (Theta).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

This is equivalent to saying that there exists constants c, C, n0 > 0 such that for
all n ≥ n0,

cg(n) ≤ f(n) ≤ Cg(n).

In this case, we say that f(n) is Theta of g(n).1

Proposition 6.4 (Logarithms in different bases).
For any constant b > 1,

logb n = Θ(log n).

6.2 Worst-Case Running Time of Algorithms

Definition 6.5 (Worst-case running time of an algorithm).
Suppose we are using some computational model in which what constitutes a
step in an algorithm is understood. Suppose also that for any input x, we have
an explicit definition of its length. The worst-case running time of an algorithm
A is a function TA : N→ N defined by

TA(n) = max
instances/inputs x

of length n

number of steps A takes on input x.

We drop the subscript A and just write T (n) when A is clear from the context.

1The reason we don’t call it big-Theta is that there is no separate notion of little-theta, whereas
little-o o(·) and little-omega ω(·) have meanings separate from big-O and big-Omega. We don’t
cover little-o and little-omega in this course.

20

Definition 6.6 (Names for common growth rates).

Constant time: T (n) = O(1).

Logarithmic time: T (n) = O(log n).

Linear time: T (n) = O(n).

Quadratic time: T (n) = O(n2).

Polynomial time: T (n) = O(nk) for some constant k > 0.

Exponential time: T (n) = O(2n
k

) for some constant k > 0.

Proposition 6.7 (Intrinsic complexity of {0k1k : k ∈ N}).
The intrinsic complexity of L = {0k1k : k ∈ N} is Θ(n).

6.3 Complexity of Algorithms with Integer Inputs

Definition 6.8 (Integer addition and integer multiplication problems).
In the integer addition problem, we are given two n-bit numbers x and y, and the
output is their sum x+ y. In the integer multiplication problem, we are given two
n-bit numbers x and y, and the output is their product xy.

Theorem 6.9 (Karatsuba algorithm for integer multiplication).
The integer multiplication problem can be solved in time O(n1.59).

21

22

Chapter 7

Stable Matchings

23

7.1 Stable Matchings

Definition 7.1 (Stable matching problem).
An instance of the stable matching problem is a tuple of sets (X,Y) with |X| =
|Y |, and a preference list for each element of X and Y . A preference list for an
element in X is an ordering of the elements in Y , and a preference list for an
element in Y is an ordering of the elements of X . Below is an example of an
instance of the stable matching problem:

The output of the stable matching problem is a stable matching, which is a subset
S of {(x, y) : x ∈ X, y ∈ Y }with the following properties:

(i) The matching is a perfect matching, which means every x ∈ X and every
y ∈ Y appear exactly once in S. If (x, y) ∈ S, we say x and y are matched.

(ii) There are no unstable pairs. A pair (x, y) where x ∈ X and y ∈ Y is called
unstable if (x, y) 6∈ S, but they both prefer each other to the elements they
are matched to.

Theorem 7.2 (Gale-Shapley proposal algorithm).
There is a polynomial time algorithm which, given an instance of the stable matching
problem, always returns a stable matching.

Definition 7.3 (Best and worst valid partners).
Consider an instance of the stable matching problem. We say that m ∈ X is
a valid partner of w ∈ Y (or w is a valid partner of m) if there is some stable
matching in which m and w are matched. For u ∈ X ∪ Y , we define the best
valid partner of u, denoted best(u), to be the highest ranked valid partner of
u. Similarly, we define the worst valid partner of u, denoted worst(u), to be the
lowest ranked valid partner of u.

Theorem 7.4 (Gale-Shapley is male optimal).
The Gale-Shapley algorithm always matches a malem ∈ X with its best valid partner,
i.e., it returns {(m, best(m)) : m ∈ X}.

24

Chapter 8

Introduction to Graph Theory

25

8.1 Basic Definitions

Definition 8.1 (Undirected graph).
An undirected graph1 G is a pair (V,E), where

• V is a finite non-empty set called the set of vertices (or nodes),

• E is a set called the set of edges, and every element of E is of the form
{u, v} for distinct u, v ∈ V .

Definition 8.2 (Neighborhood of a vertex).
Let G = (V,E) be a graph, and e = {u, v} ∈ E be an edge in the graph. In
this case, we say that u and v are neighbors or adjacent. We also say that u and
v are incident to e. For v ∈ V , we define the neighborhood of v, denoted N(v),
as the set of all neighbors of v, i.e. N(v) = {u : {v, u} ∈ E}. The size of the
neighborhood, |N(v)|, is called the degree of v, and is denoted by deg(v).

Definition 8.3 (d-regular graphs).
A graphG = (V,E) is called d-regular if every vertex v ∈ V satisfies deg(v) = d.

Theorem 8.4 (Handshake Theorem).
Let G = (V,E) be a graph. Then ∑

v∈V
deg(v) = 2m.

Definition 8.5 (Paths and cycles).
Let G = (V,E) be a graph. A path of length k in G is a sequence of distinct
vertices

v0, v1, . . . , vk

such that {vi−1, vi} ∈ E for all i ∈ {1, 2, . . . , k}. In this case, we say that the
path is from vertex v0 to vertex vk.

A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

v0, v1, . . . , vk−1, v0

such that v0, v1, . . . , vk−1 is a path, and {v0, vk−1} ∈ E. In other words, a cycle
is just a “closed” path. The starting vertex in the cycle is not important. So for
example,

v1, v2, . . . , vk−1, v0, v1

would be considered the same cycle. Also, if we list the vertices in reverse
order, we consider it to be the same cycle. For example,

v0, vk−1, vk−2 . . . , v1, v0

represents the same cycle as before.
A graph that contains no cycles is called acyclic.

1Often the word “undirected” is omitted.

26

Definition 8.6 (Connected graph, connected component).
Let G = (V,E) be a graph. We say that two vertices in G are connected if there
is a path between those two vertices. We say that G is connected if every pair of
vertices in G is connected.

A subset S ⊆ V is called a connected component of G if G restricted to S, i.e.
the graphG′ = (S,E′ = {{u, v} ∈ E : u, v ∈ S}), is a connected graph, and S is
disconnected from the rest of the graph (i.e. {u, v} 6∈ E when u ∈ S and v 6∈ S).
Note that a connected graph is a graph with only one connected component.

Theorem 8.7 (Min number of edges to connect a graph).
Let G = (V,E) be a connected graph with n vertices and m edges. Then m ≥ n− 1.
Furthermore, m = n− 1 if and only if G is acyclic.

Definition 8.8 (Tree, leaf, internal node).
A graph satisfying two of the following three properties is called a tree:

(i) connected,

(ii) m = n− 1,

(iii) acyclic.

A vertex of degree 1 in a tree is called a leaf. And a vertex of degree more than
1 is called an internal node.

Definition 8.9 (Directed graph).
A directed graph G is a pair (V,A), where

• V is a non-empty finite set called the set of vertices (or nodes),

• A is a finite set called the set of directed edges (or arcs), and every element
of A is a tuple (u, v) for u, v ∈ V . If (u, v) ∈ A, we say that there is a
directed edge from u to v. Note that (u, v) 6= (v, u) unless u = v.

Definition 8.10 (Neighborhood, out-degree, in-degree, sink, source).
Let G = (V,A) be a directed graph. For u ∈ V , we define the neighborhood
of u, N(u), as the set {v ∈ V : (u, v) ∈ A}. The out-degree of u, denoted
degout(u), is |N(u)|. The in-degree of u, denoted degin(u), is the size of the set
{v ∈ V : (v, u) ∈ A}. A vertex with out-degree 0 is called a sink. A vertex with
in-degree 0 is called a source.

8.2 Graph Algorithms

8.2.1 Graph searching algorithms

Definition 8.11 (Arbitrary-first search (AFS) algorithm).
The arbitrary-first search algorithm, denoted AFS, is the following generic al-
gorithm for searching a given graph. Below, “bag” refers to an arbitrary data
structure that allows us to add and retrieve objects.

27

G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put s into bag.
2 While bag is non-empty:
3 Pick an arbitrary vertex v from bag.
4 If v is unmarked:
5 Mark v.
6 For each neighbor w of v:
7 Put w into bag.

Note that when a vertex w is added to the bag, it gets there because it is the
neighbor of a vertex v that has been just marked by the algorithm. In this case,
we’ll say that v is the parent of w (and w is the child of v). Explicitly keeping
track of this parent-child relationship is convenient, so we modify the above
algorithm to keep track of this information. Below, a tuple of vertices (v, w)
has the meaning that vertex v is the parent of w. The initial vertex s has no
parent, so we denote this situation by (⊥, s).

G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put (⊥, s) into bag.
2 While bag is non-empty:
3 Pick an arbitrary tuple (p, v) from bag.
4 If v is unmarked:
5 Mark v.
6 parent(v) = p.
7 For each neighbor w of v:
8 Put (v, w) into bag.

Definition 8.12 (Breadth-first search (BFS) algorithm).
The breadth-first search algorithm, denoted BFS, is AFS where the bag is chosen
to be a queue data structure.

Definition 8.13 (Depth-first search (DFS) algorithm).
The depth-first search algorithm, denoted DFS, is AFS where the bag is chosen
to be a stack data structure.

8.2.2 Minimum spanning tree

Definition 8.14 (Minimum spanning tree (MST) problem).
In the minimum spanning tree problem, the input is a connected undirected graph
G = (V,E) together with a cost function c : E → R+. The output is a subset
of the edges of minimum total cost such that, in the graph restricted to these
edges, all the vertices of G are connected.2 For convenience, we’ll assume that
the edges have unique edge costs, i.e. e 6= e′ =⇒ c(e) 6= c(e′).

2Obviously this subset of edges would not contain a cycle since if it did, we could remove any
edge on the cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set
forms a tree.

28

Theorem 8.15 (MST cut property).
Suppose we are given an instance of the MST problem. For any V ′ ⊆ V , let e =
{u,w} be the cheapest edge with the property that u ∈ V ′ and w ∈ V \V ′. Then e
must be in the minimum spanning tree.

Theorem 8.16 (Jarnı́k-Prim algorithm for MST).
There is an algorithm that solves the MST problem in polynomial time.

8.2.3 Topological sorting

Definition 8.17 (Topological order of a directed graph).
A topological order of an n-vertex directed graph G = (V,A) is a bijection f :
V → {1, 2, . . . , n} such that if (u, v) ∈ A, then f(u) < f(v).

Definition 8.18 (Topological sorting problem).
In the topological sorting problem, the input is a directed acyclic graph, and the
output is a topological order of the graph.

Lemma 8.19 (Acyclic directed graph has a sink).
If a directed graph is acyclic, then it has a sink vertex.

Theorem 8.20 (Topological sort via DFS).
There is a O(n+m)-time algorithm that solves the topological sorting problem.

29

30

Chapter 9

Matchings in Graphs

31

9.1 Maximum Matchings

Definition 9.1 (Matching – maximum, maximal, perfect).
A matching in a graph G = (V,E) is a subset of the edges that do not share an
endpoint. A maximum matching in G is a matching with the maximum number
of edges among all possible matchings. A maximal matching is a matching with
the property that if we add any other edge to the matching, it is no longer a
matching.1 A perfect matching is a matching that covers all the vertices of the
graph.

Definition 9.2 (Maximum matching problem).
In the maximum matching problem the input is an undirected graph G = (V,E)
and the output is a maximum matching in G.

Definition 9.3 (Augmenting path).
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. An augmenting
path in G with respect to M is a path such that

(i) the path is an alternating path, which means that the edges in the path
alternate between being in M and not in M
(a single edge which is not in M satisfies this property),

(ii) the first and last vertices in the path are not a part of the matching M .

Theorem 9.4 (Characterization for maximum matchings).
Let G = (V,E) be a graph. A matching M ⊆ E is maximum if and only if there is no
augmenting path in G with respect to M .

Definition 9.5 (Bipartite graph).
A graph G = (V,E) is called bipartite if there is a partition2 of V into sets X
and Y such that all the edges in E have one endpoint in X and the other in
Y . Sometimes the bipartition is given explicitly and the graph is denoted by
G = (X,Y,E).

Definition 9.6 (k-colorable graphs).
Let G = (V,E) be a graph. Let k ∈ N+. A k-coloring of V is just a map χ : V →
C where C is a set of cardinality k. (Usually the elements of C are called colors.
If k = 3 then C = {red,green, blue} is a popular choice. If k is large, we often
just call the “colors” 1, 2, . . . , k.) A k-coloring is said to be legal for G if every
edge in E is bichromatic, meaning that its two endpoints have different colors.
(I.e., for all {u, v} ∈ E it is required that χ(u) 6= χ(v).) Finally, we say that G is
k-colorable if it has a legal k-coloring.

Theorem 9.7 (Characterization of bipartite graphs).
A graph is bipartite if and only if it contains no odd-length cycles.

1Note that a maximal matching is not necessarily a maximum matching, but a maximum
matching is always a maximal matching.

2Recall that a partition of V into X and Y means that X and Y are disjoint and X ∪ Y = V .

32

Theorem 9.8 (Finding a maximum matching in bipartite graphs).
There is a polynomial time algorithm to solve the maximum matching problem in bi-
partite graphs.

Theorem 9.9 (Hall’s Theorem).
Let G = (X,Y,E) be a bipartite graph. For a subset S of the vertices, let N(S) =⋃

v∈S N(v). Then G has a matching covering all the vertices in X if and only if for all
S ⊆ X , we have |S| ≤ |N(S)|.

Corollary 9.10 (Characterization of bipartite graphs with perfect matchings).
Let G = (X,Y,E) be a bipartite graph. Then G has a perfect matching if and only if
|X| = |Y | and for any S ⊆ X , we have |S| ≤ |N(S)|.

33

34

Chapter 10

Boolean Circuits

35

10.1 Basic Definitions

Definition 10.1 (Boolean circuit).
A Boolean circuit with n-input variables (n ≥ 0) is a directed acyclic graph
with the following properties. Each node of the graph is called a gate and each
directed edge is called a wire. There are 5 types of gates that we can choose to
include in our circuit: AND gates, OR gates, NOT gates, input gates, and con-
stant gates. There are 2 constant gates, one labeled 0 and one labeled 1. These
gates have in-degree/fan-in1 0. There are n input gates, one corresponding to
each input variable. These gates also have in-degree/fan-in 0. An AND gate
corresponds to the binary AND operation ∧ and an OR gate corresponds to
the binary OR operation ∨. These gates have in-degree/fan-in 2. A NOT gate
corresponds to the unary NOT operation ¬, and has in-degree/fan-in 1. One of
the gates in the circuit is labeled as the output gate. Gates can have out-degree
more than 1, with the exception of the output gate, which has out-degree 0.

For each 0/1 assignment to the input variables, the Boolean circuit pro-
duces a one-bit output. The output of the circuit is the output of the gate that
is labeled as the output gate. The output is calculated naturally using the truth
tables of the operations corresponding to the gates. The input-output behavior
of the circuit defines a function f : {0, 1}n → {0, 1} and in this case, we say
that the circuit computes this function.

Definition 10.2 (Circuit family).
A circuit family C is a collection of circuits, (C0, C1, C2, . . .), such that each Cn

is a circuit that has access to n input gates.

Definition 10.3 (A circuit family deciding/computing a decision problem).
Let f : {0, 1}∗ → {0, 1} be a decision problem and let fn : {0, 1}n → {0, 1}
be the restriction of f to words of length n. We say that a circuit family C =
(C0, C1, C2, . . .) decides/computes f if Cn computes fn for every n.

Definition 10.4 (Circuit size and complexity).
The size of a circuit is defined to be the number of gates in the circuit, excluding
the constant gates 0 and 1. The size of a circuit family C = (C0, C1, C2, . . .) is a
function S : N→ N such that S(n) equals the size of Cn. The circuit complexity
of a decision problem f = (f0, f1, f2, . . .) is the size of the minimal circuit
family that decides f . In other words, the circuit complexity of f is defined
to be a function CCf : N → N such that CCf (n) is the minimum size of a
circuit computing fn. Using the correspondence between decision problems
and languages, we can also define the circuit complexity of a language in the
same manner.2

10.2 3 Theorems on Circuits

Theorem 10.5 (O(2n) upper bound on circuit complexity).
Any language L ⊆ {0, 1}∗ can be computed by a circuit family of size O(2n).

1The in-degree of a gate is also known as the fan-in of the gate.
2Note that circuit complexity corresponds to the intrinsic complexity of the language with re-

spect to the computational model of Boolean circuits. In the case of Boolean circuits, intrinsic
complexity (i.e. circuit complexity) is well-defined.

36

Proposition 10.6 (Number of Boolean functions).
The set of all functions of the form f : {0, 1}n → {0, 1} has size 22n

.

Theorem 10.7 (Shannon’s Theorem).
There exists a language L ⊆ {0, 1}∗ such that any circuit family computing L must
have size at least 2n/5n.

Lemma 10.8 (Counting circuits).
The number of possible circuits of size at most s is less than or equal to 25s log s.

Theorem 10.9 (Efficient TM implies efficient circuit).
Let L ⊆ {0, 1}∗ be a language which can be decided in O(T (n)) time. Then L can be
computed by a circuit family of size O(T (n)2).

Definition 10.10 (Complexity class P).
We denote by P the set of all languages that can be decided in polynomial-time,
i.e., in time O(nk) for some constant k > 0.

Corollary 10.11 (A language in P has polynomial circuit complexity).
If L ∈ P, then L can be computed by a circuit family of polynomial size. Equivalently,
if L cannot be computed by a circuit family of polynomial size, then L 6∈ P.

37

38

Chapter 11

Polynomial-Time Reductions

39

11.1 Cook and Karp Reductions

Definition 11.1 (k-Coloring problem).
In the k-coloring problem, the input is an undirected graph G = (V,E), and
the output is True if and only if the graph is k-colorable (see Definition 9.6
(k-colorable graphs)). We denote this problem by kCOL. The corresponding
language is

{〈G〉 : G is a k-colorable graph}.

Definition 11.2 (Clique problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called a
clique if there is an edge between any two vertices in the subset. We say that
G contains a k-clique if there is a subset of the vertices of size k that forms a
clique.

In the clique problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains a
k-clique. We denote this problem by CLIQUE. The corresponding language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains a k-clique}.

Definition 11.3 (Independent set problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called an in-
dependent set if there is no edge between any two vertices in the subset. We say
that G contains an independent set of size k if there is a subset of the vertices
of size k that forms an independent set.

In the independent set problem, the input is an undirected graph G = (V,E)
and a number k ∈ N+, and the output is True if and only if the graph contains
an independent set of size k. We denote this problem by IS. The corresponding
language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains an independent set of size k}.

Definition 11.4 (Circuit satisfiability problem).
We say that a circuit is satisfiable if there is 0/1 assignment to the input gates
that makes the circuit output 1. In the circuit satisfiability problem, the input is
a Boolean circuit, and the output is True if and only if the circuit is satisfiable.
We denote this problem by CIRCUIT-SAT. The corresponding language is

{〈C〉 : C is a Boolean circuit that is satisfiable}.

Definition 11.5 (Boolean satisfiability problem).
Let x1, . . . , xn be Boolean variables, i.e., variables that can be assigned True
or False. A literal refers to a Boolean variable or its negation. A clause is an
“OR” of literals. For example, x1 ∨ ¬x3 ∨ x4 is a clause. A Boolean formula in
conjunctive normal form (CNF) is an “AND” of clauses. For example,

(x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5)

is a CNF formula. We say that a Boolean formula is satisfiable if there is a 0/1
assignment to the Boolean variables that makes the formula evaluate to 1.

40

In the CNF satisfiability problem, the input is a CNF formula, and the output
is True if and only if the formula is satisfiable. We denote this problem by SAT.
The corresponding language is

{〈ϕ〉 : ϕ is a satisfiable CNF formula}.

In a variation of SAT, we restrict the input formula such that every clause has
exactly 3 literals (we call such a formula a 3CNF formula). This variation of
the problem is denoted by 3SAT.

Definition 11.6 (Karp reduction: Polynomial-time many-one reduction).
Let A and B be two languages. Suppose that there is a polynomial-time com-
putable function (also called a polynomial-time transformation) f : Σ∗ → Σ∗

such that x ∈ A if and only if f(x) ∈ B. Then we say that there is a polynomial-
time many-one reduction (or a Karp reduction, named after Richard Karp) from A
to B, and denote it by A ≤P

m B.

Theorem 11.7 (CLIQUE reduces to IS).
CLIQUE ≤P

m IS.

Theorem 11.8 (CIRCUIT-SAT reduces to 3COL).
CIRCUIT-SAT ≤P

m 3COL.

11.2 Hardness and Completeness

Definition 11.9 (C-hard, C-complete).
Let C be a set of languages containing P.

• We say that L is C-hard (with respect to Cook reductions) if for all lan-
guages K ∈ C, K ≤P L.
(With respect to polynomial time decidability, a C-hard language is at
least as “hard” as any language in C.)

• We say that L is C-complete if L is C-hard and L ∈ C.
(A C-complete language represents the “hardest” language in C with re-
spect to polynomial time decidability.)

41

42

Chapter 12

Non-Deterministic Polynomial Time

43

12.1 Non-Deterministic Polynomial Time NP

Definition 12.1 (Non-deterministic polynomial time, complexity class NP).
Fix some alphabet Σ. We say that a languageL can be decided in non-deterministic
polynomial time if there exists

(i) a polynomial-time decider TM V that takes two strings as input, and

(ii) a constant k > 0,

such that for all x ∈ Σ∗:

• if x ∈ L, then there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts,

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

If x ∈ L, a string u that makes V (x, u) accept is called a proof (or certificate) of x
being in L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in non-
deterministic polynomial time.

Proposition 12.2 (3COL is in NP).
3COL ∈ NP.

Proposition 12.3 (CIRCUIT-SAT is in NP).
CIRCUIT-SAT ∈ NP.

Proposition 12.4 (P is contained in NP).
P ⊆ NP.

Definition 12.5 (Complexity class EXP).
We denote by EXP the set of all languages that can be decided in at most
exponential-time, i.e., in time O(2n

C

) for some constant C > 0.

12.2 NP-complete problems

Theorem 12.6 (Cook-Levin Theorem).
CIRCUIT-SAT is NP-complete.

Theorem 12.7 (3COL is NP-complete).
3COL is NP-complete.

Theorem 12.8 (3SAT is NP-complete).
3SAT is NP-complete.

Theorem 12.9 (CLIQUE is NP-complete).
CLIQUE is NP-complete.

Theorem 12.10 (IS is NP-complete).
IS is NP-complete.

44

12.3 Proof of Cook-Levin Theorem

45

46

Chapter 13

Approximation Algorithms

47

13.1 Basic Definitions

Definition 13.1 (Optimization problem).
A minimization optimization problem is a function f : Σ∗ × Σ∗ → R≥0 ∪ {no}. If
f(x, y) = α ∈ R≥0, we say that y is a solution to x with value α. If f(x, y) = no,
then y is not a solution to x. We let OPTf (x) denote the minimum f(x, y)
among all solutions y to x.1 We drop the subscript f , and just write OPT(x),
when f is clear from the context.

In a maximization optimization problem, OPTf (x) is defined using a maxi-
mum rather than a minimum.

We say that an optimization problem f is computable if there is an algo-
rithm such that given as input x ∈ Σ∗, it produces as output a solution y to
x such that f(x, y) = OPT(x). We often describe an optimization problem by
describing the input and a corresponding output (i.e. a solution y such that
f(x, y) = OPT(x)).

Definition 13.2 (Optimization version of the Vertex-cover problem).
Given an undirected graph G = (V,E), a vertex cover in G is a set S ⊆ V such
that for all edges in E, at least one of its endpoints is in S.2

The VERTEX-COVER problem is the following. Given as input an undi-
rected graph G together with an integer k, output True if and only if there is a
vertex cover in G of size at most k. The corresponding language is

{〈G, k〉 : G is a graph that has a vertex cover of size at most k}.

In the optimization version of VERTEX-COVER, we are given as input an
undirected graphG and the output is a vertex cover of minimum size. We refer
to this problem as MIN-VC.

Using the notation in Definition 13.1 (Optimization problem), the corre-
sponding function f is defined as follows. Let x = 〈G〉 for some graph G. If y
represents a vertex cover in G, then f(x, y) is defined to be the size of the set
that y represents. Otherwise f(x, y) = no.

Definition 13.3 (Approximation algorithm).

• Let f be a minimization optimization problem and let α > 1 be some
parameter. We say that an algorithm A is an α-approximation algorithm
for f if for all instances x, f(x,A(x)) ≤ α ·OPT(x).

• Let f be a maximization optimization problem and let 0 < β < 1 be some
parameter. We say that an algorithm A is a β-approximation algorithm
for f if for all instances x, f(x,A(x)) ≥ β ·OPT(x).

13.2 Examples of Approximation Algorithms

Lemma 13.4 (Vertex cover vs matching).
Given a graph G = (V,E), let M ⊆ E be a matching in G, and let S ⊂ V be a vertex
cover in G. Then, |S| ≥ |M |.

1There are a few technicalities. We will assume that f is such that every x has at least one
solution y, and that the minimum always exists.

2We previously called such a set a popular set.

48

Theorem 13.5 (Gavril’s Algorithm).
There is a polynomial-time 2-approximation algorithm for the optimization problem
MIN-VC.

Definition 13.6 (Max-cut problem).
Let G = (V,E) be a graph. Given a coloring of the vertices with 2 colors, we
say that an edge e = {u, v} is cut if u and v are colored differently. In the max-
cut problem, the input is a graph G, and the output is a coloring of the vertices
with 2 colors that maximizes the number of cut edges. We denote this problem
by MAX-CUT.

Theorem 13.7 ((1/2)-approximation algorithm for MAX-CUT).
There is a polynomial-time 1

2 -approximation algorithm for the optimization problem
MAX-CUT.

Definition 13.8 (Traveling salesperson problem (TSP)).
In the Traveling salesperson problem, the input is a connected graph G = (V,E)
together with edge costs c : E → N. The output is a Hamiltonian cycle that
minimizes the total cost of the edges in the cycle, if one exists.

A popular variation of this problem is called Metric-TSP. In this version of
the problem, instead of outputting a Hamiltonian cycle of minimum cost, we
output a “tour” that starts and ends at the same vertex and visits every vertex
of the graph at least once (so the tour is allowed to visit a vertex more than
once). In other words, the output is a list of vertices vi1 , vi2 , . . . , vik , vi1 such
that the vertices are not necessarily unique, all the vertices of the graph appear
in the list, any two consecutive vertices in the list form an edge, and the total
cost of the edges is minimized.

Theorem 13.9 (2-approximation algorithm for Metric-TSP).
There is a polynomial-time 2-approximation algorithm for Metric-TSP.

Definition 13.10 (Max-coverage problem).
In the max-coverage problem, the input is a set X , a collection of (possibly inter-
secting) subsets S1, S2, . . . , Sm ⊆ X (we assume the union of all the sets is X),
and a number k ∈ {0, 1, . . . ,m}. The output is a set T ⊆ {1, 2, . . . ,m} of size
k that maximizes | ∪i∈T Si| (the elements in this intersection are called covered
elements). We denote this problem by MAX-COVERAGE.

49

50

Chapter 14

Probability Theory

51

14.1 Probability I: The Basics

14.1.1 Basic Definitions

Definition 14.1 (Finite probability space, sample space, probability distribu-
tion).
A finite probability space is a tuple (Ω,Pr), where

• Ω is a non-empty finite set called the sample space;

• Pr : Ω → [0, 1] is a function, called the probability distribution, with the
property that

∑
`∈Ω Pr[`] = 1.

The elements of Ω are called outcomes or samples. If Pr[`] = p, then we say that
the probability of outcome ` is p.

Definition 14.2 (Uniform distribution).
If a probability distribution Pr : Ω → [0, 1] is such that Pr[`] = 1/|Ω| for all
` ∈ Ω, then we call it a uniform distribution.

Definition 14.3 (Event).
Let (Ω,Pr) be a probability space. Any subset of outcomes E ⊆ Ω is called
an event. We abuse notation and write Pr[E] to denote

∑
`∈E Pr[`]. Using this

notation, Pr[∅] = 0 and Pr[Ω] = 1. We use the notation E to denote the event
Ω\E.

Definition 14.4 (Disjoint events).
We say that two events A and B are disjoint if A ∩B = ∅.

Definition 14.5 (Conditional probability).
Let B be an event with Pr[B] 6= 0. The conditional probability of outcome ` ∈ Ω
given B, denoted Pr[` | B], is defined as

Pr[` | B] =

{
0 if ` 6∈ B
Pr[`]
Pr[B] if ` ∈ B

For an event A, the conditional probability of A given B, denoted Pr[A | B], is
defined as

Pr[A | B] =
Pr[A ∩B]

Pr[B]
. (14.1)

52

14.1.2 Three Useful Rules

Proposition 14.6 (Chain rule).
Let n ≥ 2 and let A1, A2, . . . , An be events. Then

Pr[A1 ∩ · · · ∩An] =

Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] · · ·Pr[An | A1 ∩A2 ∩ · · · ∩An−1].

Proposition 14.7 (Law of total probability).
LetA1, A2, . . . , An, B be events such that theAi’s form a partition of the sample space
Ω. Then

Pr[B] = Pr[B ∩A1] + Pr[B ∩A2] + · · ·+ Pr[B ∩An].

Equivalently,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An].

Proposition 14.8 (Bayes’ rule).
Let A and B be events. Then,

Pr[A | B] =
Pr[A] ·Pr[B | A]

Pr[B]
.

14.1.3 Independence

Definition 14.9 (Independent events).

• LetA andB be two events. We say thatA andB are independent if Pr[A∩
B] = Pr[A] · Pr[B]. Note that if Pr[B] 6= 0, then this is equivalent to
Pr[A | B] = Pr[A]. If Pr[A] 6= 0, it is also equivalent to Pr[B | A] =
Pr[B].

• Let A1, A2, . . . , An be events with non-zero probabilities. We say that
A1, . . . , An are independent if for any subset S ⊆ {1, 2, . . . , n},

Pr

[⋂
i∈S

Ai

]
=

∏
i∈S

Pr[Ai].

14.2 Probability II: Random Variables

14.2.1 Basics of random variables

Definition 14.10 (Random variable).
A random variable is a function X : Ω→ R.

53

Definition 14.11 (Common events through a random variable).
Let X be a random variable and x ∈ R be some real value. We use

X = x to denote the event {` ∈ Ω : X(`) = x},
X ≤ x to denote the event {` ∈ Ω : X(`) ≤ x},
X ≥ x to denote the event {` ∈ Ω : X(`) ≥ x},
X < x to denote the event {` ∈ Ω : X(`) < x},
X > x to denote the event {` ∈ Ω : X(`) > x}.

For example, Pr[X = x] denotes Pr[{` ∈ Ω : X(`) = x}]. More generally, for
S ⊆ R, we use

X ∈ S to denote the event {` ∈ Ω : X(`) ∈ S}.

Definition 14.12 (Probability mass function (PMF)).
Let X : Ω→ R be a random variable. The probability mass function (PMF) of X
is a function pX : R→ [0, 1] such that for any x ∈ R, pX(x) = Pr[X = x].

Definition 14.13 (Expected value of a random variable).
Let X be a random variable. The expected value of X , denoted E[X], is defined
as follows:

E[X] =
∑
`∈Ω

Pr[`] ·X(`).

Equivalently,
E[X] =

∑
x∈range(X)

Pr[X = x] · x,

where range(X) = {X(`) : ` ∈ Ω}.

Proposition 14.14 (Linearity of expectation).
Let X and Y be two random variables, and let c1, c2 ∈ R be some constants. Then
E[c1X + c2Y] = c1 E[X] + c2 E[Y].

Corollary 14.15 (Linearity of expectation 2).
Let X1,X2, . . . ,Xn be random variables, and c1, c2, . . . , cn ∈ R be some constants.
Then

E[c1X1 + c2X2 + · · ·+ cnXn] = c1 E[X1] + c2 E[X2] + · · ·+ cn E[Xn].

In particular, when all the ci’s are 1, we get

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

Definition 14.16 (Indicator random variable).
Let E ⊆ Ω be some event. The indicator random variable with respect to E is
denoted by IE and is defined as

IE(`) =

{
1 if ` ∈ E,
0 otherwise.

54

Proposition 14.17 (Expectation of an indicator random variable).
Let E be an event. Then E[IE] = Pr[E].

Definition 14.18 (Conditional expectation).
Let X be a random variable and E be an event. The conditional expectation of
X given the event E, denoted by E[X | E], is defined as

E[X | E] =
∑

x∈range(X)

x ·Pr[X = x | E].

Proposition 14.19 (Law of total expectation).
Let X be a random variable and A1, A2, . . . , An be events that partition the sample
space Ω. Then

E[X] = E[X | A1] ·Pr[A1] + E[X | A2] ·Pr[A2] + · · ·+ E[X | An] ·Pr[An].

Definition 14.20 (Independent random variables).
Two random variables X and Y are independent if for all x, y ∈ R, the events
X = x and Y = y are independent. The definition generalizes to more than
two random variables analogous to Definition 14.9 (Independent events).

14.2.2 The most fundamental inequality in probability theory

Theorem 14.21 (Markov’s inequality).
Let X be a non-negative random variable with non-zero expectation. Then for any
c > 0,

Pr[X ≥ cE[X]] ≤ 1

c
.

14.2.3 Three popular random variables

Definition 14.22 (Bernoulli random variable).
Let 0 < p < 1 be some parameter. If X is a random variable with probability
mass function pX(1) = p and pX(0) = 1−p, then we say that X has a Bernoulli
distribution with parameter p (we also say that X is a Bernoulli random variable).
We write X ∼ Bernoulli(p) to denote this. The parameter p is often called the
success probability.

Definition 14.23 (Binomial random variable).
Let X = X1+X2+· · ·+Xn, where the Xi’s are independent and for all i, Xi ∼
Bernoulli(p). Then we say that X has a binomial distribution with parameters n
and p (we also say that X is a binomial random variable). We write X ∼
Bin(n, p) to denote this.

Definition 14.24 (Geometric random variable).
Let X be a random variable with probability mass function pX such that for
n ∈ {1, 2, . . .}, pX(n) = (1 − p)n−1p. Then we say that X has a geometric dis-
tribution with parameter p (we also say that X is a geometric random variable).
We write X ∼ Geometric(p) to denote this.

55

56

Chapter 15

Randomized Algorithms

57

15.1 Monte Carlo and Las Vegas Algorithms

Definition 15.1 (Monte Carlo algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let 0 ≤ ε < 1 be some parameter
and T : N→ N be some function. Suppose A is a randomized algorithm such
that

• for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ ε;

• for all x ∈ Σ∗, Pr[number of steps A(x) takes is at most T (|x|)] = 1.

(Note that the probabilities are over the random choices made by A.) Then
we say that A is a T (n)-time Monte Carlo algorithm that computes f with ε
probability of error.

Definition 15.2 (Las Vegas algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let T : N→ N be some function.
Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) = f(x)] = 1, where the probability is over the
random choices made by A;

• for all x ∈ Σ∗, E[number of steps A(x) takes] ≤ T (|x|).

Then we say that A is a T (n)-time Las Vegas algorithm that computes f .

15.2 Monte Carlo Algorithm for the Minimum Cut

Problem

Definition 15.3 (Minimum cut problem).
In the minimum cut problem, the input is a connected undirected graph G,
and the output is a 2-coloring of the vertices such that the number of cut edges
is minimized. (See Definition 13.6 (Max-cut problem) for the definition of a cut
edge.) Equivalently, we want to output a non-empty subset S (V such that
the number of edges between S and V \S is minimized. Such a set S is called
a cut and the size of the cut is the number of edges between S and V \S (note
that the size of the cut is not the number of vertices). We denote this problem
by MIN-CUT.

Definition 15.4 (Multi-graph).
A multi-graph G = (V,E) is an undirected graph in which E is allowed to be a
multi-set. In other words, a multi-graph can have multiple edges between two
vertices.1

Definition 15.5 (Contraction of two vertices in a graph).
Let G = (V,E) be a multi-graph and let u, v ∈ V be two vertices in the graph.
Contraction of u and v produces a new multi-graphG′ = (V ′, E′). Informally, in
G′, we collapse/contract the vertices u and v into one vertex and preserve the
edges between these two vertices and the other vertices in the graph. Formally,
we remove the vertices u and v, and create a new vertex called uv, i.e. V ′ =
V \{u, v} ∪ {uv}. The multi-set of edges E′ is defined as follows:

1Note that this definition does not allow for self-loops.

58

• for each {u,w} ∈ E with w 6= v, we add {uv,w} to E′;

• for each {v, w} ∈ E with w 6= u, we add {uv,w} to E′;

• for each {w,w′} ∈ E with w,w′ 6∈ {u, v}, we add {w,w′} to E′.

Below is an example:

Theorem 15.6 (Contraction algorithm for min cut).
There is a polynomial-time Monte-Carlo algorithm that solves the MIN-CUT problem
with error probability at most 1/en, where n is the number of vertices in the input
graph.

59

	Strings and Encodings
	Alphabets and Strings
	Languages
	Encodings
	Computational Problems and Decision Problems

	Deterministic Finite Automata
	Basic Definitions
	Irregular Languages
	Closure Properties of Regular Languages

	Turing Machines
	Basic Definitions
	Decidable Languages

	Countable and Uncountable Sets
	Basic Definitions
	Countable Sets
	Uncountable Sets

	Undecidable Languages
	Existence of Undecidable Languages
	Examples of Undecidable Languages
	Undecidability Proofs by Reductions

	Time Complexity
	Big-O, Big-Omega and Theta
	Worst-Case Running Time of Algorithms
	Complexity of Algorithms with Integer Inputs

	Stable Matchings
	Stable Matchings

	Introduction to Graph Theory
	Basic Definitions
	Graph Algorithms
	Graph searching algorithms
	Minimum spanning tree
	Topological sorting

	Matchings in Graphs
	Maximum Matchings

	Boolean Circuits
	Basic Definitions
	3 Theorems on Circuits

	Polynomial-Time Reductions
	Cook and Karp Reductions
	Hardness and Completeness

	Non-Deterministic Polynomial Time
	Non-Deterministic Polynomial Time NP
	NP-complete problems
	Proof of Cook-Levin Theorem

	Approximation Algorithms
	Basic Definitions
	Examples of Approximation Algorithms

	Probability Theory
	Probability I: The Basics
	Basic Definitions
	Three Useful Rules
	Independence

	Probability II: Random Variables
	Basics of random variables
	The most fundamental inequality in probability theory
	Three popular random variables

	Randomized Algorithms
	Monte Carlo and Las Vegas Algorithms
	Monte Carlo Algorithm for the Minimum Cut Problem

