CMU 15-251, Spring 2018
Great Ideas in Theoretical Computer Science

Course Notes: Condensed 1

math is hard, but you don't have to do it alone!

April 4, 2018

Please send comments and corrections to Anil Ada (aada@cs.cmu.edu).

Foreword

These notes are based on the lectures given by Anil Ada and Klaus Sutner for the Spring 2018 edition of the course 15-251 "Great Ideas in Theoretical Computer Science" at Carnegie Mellon University. They are also closely related to the previous editions of the course, and in particular, lectures prepared by Ryan O'Donnell.

WARNING: The purpose of these notes is to complement the lectures. These notes do not contain full explanations of all the material covered during lectures. In particular, the intuition and motivation behind many concepts and proofs are explained during the lectures and not in these notes.

There are various versions of the notes that omit certain parts of the notes. Go to the course webpage to access all the available versions.

In the main version of the notes (i.e. the main document), each chapter has a preamble containing the chapter structure and the learning goals. The preamble may also contain some links to concrete applications of the topics being covered. At the end of each chapter, you will find a short quiz for you to complete before coming to recitation, as well as hints to selected exercise problems.

Note that some of the exercise solutions are given in full detail, whereas for others, we give all the main ideas, but not all the details. We hope the distinction will be clear.

Acknowledgements

The course 15-251 was created by Steven Rudich many years ago, and we thank him for creating this awesome course. Here is the webpage of an early version of the course:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/. Since then, the course has evolved. The webpage of the current version is here:
http://www.cs.cmu.edu/~15251/.
Thanks to the previous and current instructors of 15-251, who have contributed a lot to the development of the course: Victor Adamchik, Luis von Ahn, Anupam Gupta, Venkatesan Guruswami, Bernhard Haeupler, John Lafferty, Ryan O'Donnell, Ariel Procaccia, Daniel Sleator and Klaus Sutner.

Thanks to Eric Bae, Apoorva Bhagwat, George Cai, Darshan Chakrabarti, Seth Cobb, Teddy Ding, Emilie Guermeur, Ellen Kim, Aditya Krishnan, Xinran Liu, Udit Ranasaria, Matthew Salim, Ticha Sethapakdi, Vanessa Siriwalothakul, Rosie Sun, Natasha Vasthare, Jenny Wang, Ling Xu, Ming Yang, Wynne Yao, Stephanie You, Xingjian Yu and Nancy Zhang for sending valuable comments and corrections on an earlier draft of the notes. And thanks to Parmita Bawankule, Dominic Calkosz and Deborah Chu for sending valuable comments and corrections on the current draft.

Special thanks go to Ji An Yang, a former teaching assistant for 15-251, for writing the solutions to the exercise problems in the chapter on probability theory.

Contents

1 Strings and Encodings 1
1.1 Alphabets and Strings 2
1.2 Languages 2
1.3 Encodings 3
1.4 Computational Problems and Decision Problems 4
2 Deterministic Finite Automata 5
2.1 Basic Definitions 6
2.2 Irregular Languages 7
2.3 Closure Properties of Regular Languages 7
3 Turing Machines 9
3.1 Basic Definitions 10
3.2 Decidable Languages 11
4 Countable and Uncountable Sets 13
4.1 Basic Definitions 14
4.2 Countable Sets 15
4.3 Uncountable Sets 15
5 Undecidable Languages 17
5.1 Existence of Undecidable Languages 18
5.2 Examples of Undecidable Languages 18
5.3 Undecidability Proofs by Reductions 18
6 Time Complexity 19
6.1 Big-O, Big-Omega and Theta 20
6.2 Worst-Case Running Time of Algorithms 20
6.3 Complexity of Algorithms with Integer Inputs 21
7 Stable Matchings 23
7.1 Stable Matchings 24
8 Introduction to Graph Theory 25
8.1 Basic Definitions 26
8.2 Graph Algorithms 27
8.2.1 Graph searching algorithms 27
8.2.2 Minimum spanning tree 28
8.2.3 Topological sorting 29
9 Matchings in Graphs 31
9.1 Maximum Matchings 32
10 Boolean Circuits 35
10.1 Basic Definitions 36
10.2 3 Theorems on Circuits 36
11 Polynomial-Time Reductions 39
11.1 Cook and Karp Reductions 40
11.2 Hardness and Completeness 41
12 Non-Deterministic Polynomial Time 43
12.1 Non-Deterministic Polynomial Time NP 44
12.2 NP-complete problems 44
12.3 Proof of Cook-Levin Theorem 45
13 Approximation Algorithms 47
13.1 Basic Definitions 48
13.2 Examples of Approximation Algorithms 48
14 Probability Theory 51
14.1 Probability I: The Basics 52
14.1.1 Basic Definitions 52
14.1.2 Three Useful Rules 53
14.1.3 Independence 53
14.2 Probability II: Random Variables 53
14.2.1 Basics of random variables 53
14.2.2 The most fundamental inequality in probability theory 55
14.2.3 Three popular random variables 55
15 Randomized Algorithms 57
15.1 Monte Carlo and Las Vegas Algorithms 58
15.2 Monte Carlo Algorithm for the Minimum Cut Problem 58

Chapter 1
Strings and Encodings

1.1 Alphabets and Strings

Definition 1.1 (Alphabet, symbol/character).
An alphabet is a non-empty, finite set, and is usually denoted by Σ. The elements of Σ are called symbols or characters.

Definition 1.2 (String/word, empty string).
Given an alphabet Σ, a string (or word) over Σ is a (possibly infinite) sequence of symbols, written as $a_{1} a_{2} a_{3} \ldots$, where each $a_{i} \in \Sigma$. The string with no symbols is called the empty string and is denoted by ϵ.

Definition 1.3 (Length of a string).
The length of a string w, denoted $|w|$, is the the number of symbols in w. If w has an infinite number of symbols, then the length is undefined.

Definition 1.4 (Star operation on alphabets).
Let Σ be an alphabet. We denote by Σ^{*} the set of all strings over Σ consisting of finitely many symbols. Equivalently, using set notation,

$$
\Sigma^{*}=\left\{a_{1} a_{2} \ldots a_{n}: n \in \mathbb{N}, \text { and } a_{i} \in \Sigma \text { for all } i\right\}
$$

Definition 1.5 (Reversal of a string).
For a string $w=a_{1} a_{2} \ldots a_{n}$, the reversal of w, denoted w^{R}, is the string $w^{R}=$ $a_{n} a_{n-1} \ldots a_{1}$.

Definition 1.6 (Concatenation of strings).
If u and v are two strings in Σ^{*}, the concatenation of u and v, denoted by $u v$ or $u \cdot v$, is the string obtained by joining together u and v.

Definition 1.7 (Powers of a string).
For a word $u \in \Sigma^{*}$ and $n \in \mathbb{N}$, the n^{\prime} th power of u, denoted by u^{n}, is the word obtained by concatenating u with itself n times.

Definition 1.8 (Substring).
We say that a string u is a substring of string w if $w=x u y$ for some strings x and y.

1.2 Languages

Definition 1.9 (Language).
Any (possibly infinite) subset $L \subseteq \Sigma^{*}$ is called a language over the alphabet Σ.

Definition 1.10 (Reversal of a language).
Given a language $L \subseteq \Sigma^{*}$, we define its reversal, denoted L^{R}, as the language

$$
L^{R}=\left\{w^{R} \in \Sigma^{*}: w \in L\right\}
$$

Definition 1.11 (Concatenation of languages).
Given two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$, we define their concatenation, denoted $L_{1} L_{2}$ or $L_{1} \cdot L_{2}$, as the language

$$
L_{1} L_{2}=\left\{u v \in \Sigma^{*}: u \in L_{1}, v \in L_{2}\right\}
$$

Definition 1.12 (Powers of a language).
Given a language $L \subseteq \Sigma^{*}$ and $n \in \mathbb{N}$, the n^{\prime} th power of L, denoted L^{n}, is the language obtained by concatenating L with itself n times, that is, ${ }^{1}$

$$
L^{n}=\underbrace{L \cdot L \cdot L \cdots L}_{n \text { times }}
$$

Equivalently,

$$
L^{n}=\left\{u_{1} u_{2} \cdots u_{n} \in \Sigma^{*}: u_{i} \in L \text { for all } i \in\{1,2, \ldots, n\}\right\} .
$$

Definition 1.13 (Star operation on a language).
Given a language $L \subseteq \Sigma^{*}$, we define the star of L, denoted L^{*}, as the language

$$
L^{*}=\bigcup_{n \in \mathbb{N}} L^{n}
$$

Equivalently,

$$
L^{*}=\left\{u_{1} u_{2} \cdots u_{n} \in \Sigma^{*}: n \in \mathbb{N}, u_{i} \in L \text { for all } i \in\{1,2, \ldots, n\}\right\}
$$

1.3 Encodings

Definition 1.14 (Encoding of a set).
Let A be a set (which is possibly countably infinite ${ }^{2}$), and let Σ be a alphabet. An encoding of the elements of A, using Σ, is an injective function Enc : $A \rightarrow$ Σ^{*}. We denote the encoding of $a \in A$ by $\langle a\rangle .{ }^{3}$

If $w \in \Sigma^{*}$ is such that there is some $a \in A$ with $w=\langle a\rangle$, then we say w is a valid encoding of an element in A.

A set that can be encoded is called encodable. ${ }^{4}$

[^0]
1.4 Computational Problems and Decision Problems

Definition 1.15 (Computational problem).
Let Σ be an alphabet. Any function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called a computational problem over the alphabet Σ.

Definition 1.16 (Decision problem).
Let Σ be an alphabet. Any function $f: \Sigma^{*} \rightarrow\{0,1\}$ is called a decision problem over the alphabet Σ. The codomain of the function is not important as long as it has two elements. Other common choices for the codomain are $\{\mathrm{No}, \mathrm{Yes}\}$, \{False, True\} and \{Reject, Accept $\}$.

Chapter 2
Deterministic Finite Automata

2.1 Basic Definitions

Definition 2.1 (Deterministic Finite Automaton (DFA)). A deterministic finite automaton (DFA) M is a 5 -tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where

- Q is a non-empty finite set (which we refer to as the set of states);
- Σ is a non-empty finite set (which we refer to as the alphabet of the DFA);
- δ is a function of the form $\delta: Q \times \Sigma \rightarrow Q$ (which we refer to as the transition function);
- $q_{0} \in Q$ is an element of Q
(which we refer to as the start state);
- $F \subseteq Q$ is a subset of Q
(which we refer to as the set of accepting states).

Definition 2.2 (Computation path for a DFA).
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string over an alphabet Σ (so $w_{i} \in \Sigma$ for each $i \in\{1,2, \ldots, n\}$). Then the computation path of M with respect to w is a sequence of states

$$
r_{0}, r_{1}, r_{2}, \ldots, r_{n}
$$

where each $r_{i} \in Q$, and such that

- $r_{0}=q_{0} ;$
- $\delta\left(r_{i-1}, w_{i}\right)=r_{i}$ for each $i \in\{1,2, \ldots, n\}$.

We say that the computation path is accepting if $r_{n} \in F$, and rejecting otherwise.

Definition 2.3 (A DFA accepting a string).
We say that DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a word $w \in \Sigma^{*}$ if the computation path of M with respect to w is an accepting computation path. Otherwise, we say that M rejects the string w.

Definition 2.4 (Extended transition function).
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. The transition function $\delta: Q \times \Sigma \rightarrow Q$ can be extended to $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$, where $\delta^{*}(q, w)$ is defined as the state we end up in if we start at q and read the string w. In fact, often the star in the notation is dropped and δ is overloaded to represent both a function $\delta: Q \times \Sigma \rightarrow Q$ and a function $\delta: Q \times \Sigma^{*} \rightarrow Q$.

Definition 2.5 (Language recognized/accepted by a DFA).
For a deterministic finite automaton M, we let $L(M)$ denote the set of all strings that M accepts, i.e. $L(M)=\left\{w \in \Sigma^{*}: M\right.$ accepts $\left.w\right\}$. We refer to $L(M)$ as the language recognized by M (or as the language accepted by M, or as the language decided by M). ${ }^{1}$

Definition 2.6 (Regular language).
A language $L \subseteq \Sigma^{*}$ is called regular if there is a deterministic finite automaton M such that $L=L(M)$.

2.2 Irregular Languages

Theorem 2.7 ($0^{n} 1^{n}$ is not regular).
Let $\Sigma=\{0,1\}$. The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Theorem 2.8 (A unary non-regular language).
Let $\Sigma=\{a\}$. The language $L=\left\{a^{2^{n}}: n \in \mathbb{N}\right\}$ is not regular.

2.3 Closure Properties of Regular Languages

Theorem 2.9 (Regular languages are closed under union).
Let Σ be some finite alphabet. If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular languages, then the language $L_{1} \cup L_{2}$ is also regular.

Corollary 2.10 (Regular languages are closed under intersection).
Let Σ be some finite alphabet. If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular languages, then the language $L_{1} \cap L_{2}$ is also regular.

Theorem 2.11 (Regular languages are closed under concatenation). If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are regular languages, then the language $L_{1} L_{2}$ is also regular.

[^1]Chapter 3
Turing Machines

3.1 Basic Definitions

Definition 3.1 (Turing machine).
A Turing machine (TM) M is a 7-tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

where

- Q is a non-empty finite set (which we refer to as the set of states);
- Σ is a non-empty finite set that does not contain the blank symbol \sqcup (which we refer to as the input alphabet);
- Γ is a finite set such that $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$ (which we refer to as the tape alphabet);
- δ is a function of the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
(which we refer to as the transition function);
- $q_{0} \in Q$ is an element of Q
(which we refer to as the initial state or starting state);
- $q_{\text {acc }} \in Q$ is an element of Q
(which we refer to as the accepting state);
- $q_{\mathrm{rej}} \in Q$ is an element of Q such that $q_{\mathrm{rej}} \neq q_{\mathrm{acc}}$
(which we refer to as the rejecting state).

Definition 3.2 (A TM accepting or rejecting a string).
Let M be a Turing machine where Q is the set of states, \sqcup is the blank symbol, and Γ is the tape alphabet. ${ }^{1}$ To understand how M^{\prime} s computation proceeds we generally need to keep track of three things: (i) the state M is in; (ii) the contents of the tape; (iii) where the tape head is. These three things are collectively known as the "configuration" of the TM. More formally: a configuration for M is defined to be a string $u q v \in(\Gamma \cup Q)^{*}$, where $u, v \in \Gamma^{*}$ and $q \in Q$. This represents that the tape has contents $\cdots \sqcup \sqcup \sqcup u v \sqcup \sqcup \sqcup \cdots$, the head is pointing at the leftmost symbol of v, and the state is q. We say the configuration is accepting if q is M^{\prime} s accept state and that it's rejecting if q is M^{\prime} s reject state. ${ }^{2}$

Suppose that M reaches a certain configuration α (which is not accepting or rejecting). Knowing just this configuration and M 's transition function δ, one can determine the configuration β that M will reach at the next step of the computation. (As an exercise, make this statement precise.) We write

$$
\alpha \vdash_{M} \beta
$$

and say that " α yields β (in M)". If it's obvious what M we're talking about, we drop the subscript M and just write $\alpha \vdash \beta$.

Given an input $x \in \Sigma^{*}$ we say that $M(x)$ halts if there exists a sequence of configurations (called the computation trace) $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{T}$ such that:
(i) $\alpha_{0}=q_{0} x$, where q_{0} is M^{\prime} 's initial state;
(ii) $\alpha_{t} \vdash_{M} \alpha_{t+1}$ for all $t=0,1,2, \ldots, T-1$;

[^2](iii) α_{T} is either an accepting configuration (in which case we say $M(x) a c$ cepts) or a rejecting configuration (in which case we say $M(x)$ rejects).

Otherwise, we say $M(x)$ loops.

Definition 3.3 (Decider Turing machine).
A Turing machine is called a decider if it halts on all inputs.

Definition 3.4 (Language accepted and decided by a TM).
Let M be a Turing machine (not necessarily a decider). We denote by $L(M)$ the set of all strings that M accepts, and we call $L(M)$ the language accepted by M. When M is a decider, we say that M decides the language $L(M)$.

Definition 3.5 (Decidable language).
A language L is called decidable (or computable) if $L=L(M)$ for some decider Turing machine M.

Definition 3.6 (Universal Turing machine).
Let Σ be some finite alphabet. A universal Turing machine U is a Turing machine that takes $\langle M, x\rangle$ as input, where M is a TM and x is a word in Σ^{*}, and has the following high-level description:

```
M: Turing machine. }x\mathrm{ : string in }\mp@subsup{\Sigma}{}{*}\mathrm{ .
U(\langleM,x\rangle):
    1 Simulate M on input }x\mathrm{ (i.e. run }M(x)\mathrm{ ).
    2 If it accepts, accept.
    3 If it rejects, reject.
```

Note that if $M(x)$ loops forever, then U loops forever as well. To make sure M always halts, we can add a third input, an integer k, and have the universal machine simulate the input TM for at most k steps.

3.2 Decidable Languages

Definition 3.7 (Languages related to encodings of DFAs).
Fix some alphabet Σ. We define the following languages:
ACCEPTS $_{\text {DFA }}=\{\langle D, x\rangle: D$ is a DFA that accepts the string $x\}$,
SELF-ACCEPTS DFA $=\{\langle D\rangle: D$ is a DFA that accepts the string $\langle D\rangle\}$,
EMPTY $_{\text {DFA }}=\{\langle D\rangle: D$ is a DFA with $L(D)=\emptyset\}$,
$\mathrm{EQ}_{\mathrm{DFA}}=\left\{\left\langle D_{1}, D_{2}\right\rangle: D_{1}\right.$ and D_{2} are DFAs with $\left.L\left(D_{1}\right)=L\left(D_{2}\right)\right\}$.

Theorem 3.8 (ACCEPTS DFA and SELF-ACCEPTS DFA are decidable). The languages $\mathrm{ACCEPTS}_{\mathrm{DFA}}$ and $\mathrm{SELF}-\mathrm{ACCEPTS}_{\mathrm{DFA}}$ are decidable.

Theorem 3.9 (EMPTY ${ }_{\text {DFA }}$ is decidable).
The language EMPTY DFA is decidable.

Theorem 3.10 ($\mathrm{EQ}_{\mathrm{DFA}}$ is decidable).
The language $\mathrm{EQ}_{\mathrm{DFA}}$ is decidable.

Chapter 4

Countable and Uncountable Sets

4.1 Basic Definitions

Definition 4.1 (Injection, surjection, and bijection).
Let A and B be two (possibly infinite) sets.

- A function $f: A \rightarrow B$ is called injective if for any $a, a^{\prime} \in A$ such that $a \neq a^{\prime}$, we have $f(a) \neq f\left(a^{\prime}\right)$. We write $A \hookrightarrow B$ if there exists an injective function from A to B.
- A function $f: A \rightarrow B$ is called surjective if for all $b \in B$, there exists an $a \in A$ such that $f(a)=b$. We write $A \rightarrow B$ if there exists a surjective function from A to B.
- A function $f: A \rightarrow B$ is called bijective (or one-to-one correspondence) if it is both injective and surjective. We write $A \leftrightarrow B$ if there exists a bijective function from A to B.

Theorem 4.2 (Relationships between different types of functions).
Let A, B and C be three (possibly infinite) sets. Then,
(a) $A \hookrightarrow B$ if and only if $B \rightarrow A$;
(b) if $A \hookrightarrow B$ and $B \hookrightarrow C$, then $A \hookrightarrow C$;
(c) $A \leftrightarrow B$ if and only if $A \hookrightarrow B$ and $B \hookrightarrow A$.

Definition 4.3 (Comparison of cardinality of sets).
Let A and B be two (possibly infinite) sets.

- We write $|A|=|B|$ if $A \leftrightarrow B$.
- We write $|A| \leq|B|$ if $A \hookrightarrow B$, or equivalently, if $B \rightarrow A .{ }^{1}$
- We write $|A|<|B|$ if it is not the case that $|A| \geq|B| .^{2}$

Definition 4.4 (Countable and uncountable sets).

- A set A is called countable if $|A| \leq|\mathbb{N}|$.
- A set A is called countably infinite if it is countable and infinite.
- A set A is called uncountable if it is not countable, i.e. $|A|>|\mathbb{N}|$.

Theorem 4.5 (Characterization of countably infinite sets).
A set A is countably infinite if and only if $|A|=|\mathbb{N}|$.

[^3]
4.2 Countable Sets

Proposition 4.6 ($\mathbb{Z} \times \mathbb{Z}$ is countable).
The set $\mathbb{Z} \times \mathbb{Z}$ is countable.

Proposition 4.7 (\mathbb{Q} is countable).
The set of rational numbers \mathbb{Q} is countable.

Proposition 4.8 (Σ^{*} is countable).
Let Σ be a finite set. Then Σ^{*} is countable.

Proposition 4.9 (The set of Turing machines is countable).
The set of all Turing machines $\{M: M$ is a $T M\}$ is countable.

Proposition 4.10 (The set of polynomials with rational coefficients is countable).
The set of all polynomials in one variable with rational coefficients is countable.

4.3 Uncountable Sets

Theorem 4.11 (Cantor's Theorem).
For any set $A,|\mathcal{P}(A)|>|A|$.

Corollary $4.12(\mathcal{P}(\mathbb{N})$ is uncountable).
The set $\mathcal{P}(\mathbb{N})$ is uncountable.

Corollary 4.13 (The set of languages is uncountable).
Let Σ be a finite set with $|\Sigma|>0$. Then $\mathcal{P}\left(\Sigma^{*}\right)$ is uncountable.

Definition $4.14\left(\Sigma^{\infty}\right)$.
Let Σ be some finite alphabet. We denote by Σ^{∞} the set of all infinite length words over the alphabet Σ. Note that $\Sigma^{*} \cap \Sigma^{\infty}=\emptyset$.

Theorem 4.15 ($\{0,1\}^{\infty}$ is uncountable).
The set $\{0,1\}^{\infty}$ is uncountable.

Chapter 5

Undecidable Languages

5.1 Existence of Undecidable Languages

Theorem 5.1 (Almost all languages are undecidable).
Fix some alphabet Σ. There are languages $L \subseteq \Sigma^{*}$ that are not decidable.

5.2 Examples of Undecidable Languages

Definition 5.2 (Halting problem).
The halting problem is defined as the decision problem corresponding to the language HALTS $=\{\langle M, x\rangle: M$ is a TM which halts on input $x\}$.

Theorem 5.3 (Turing's Theorem).
The language HALTS is undecidable.

Definition 5.4 (Languages related to encodings of TMs).
We define the following languages:
ACCEPTS $=\{\langle M, x\rangle: M$ is a TM that accepts the input $x\}$,
EMPTY $=\{\langle M\rangle: M$ is a TM with $L(M)=\emptyset\}$,
$\mathrm{EQ}=\left\{\left\langle M_{1}, M_{2}\right\rangle: M_{1}\right.$ and M_{2} are TMs with $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$.

Theorem 5.5 (ACCEPTS is undecidable).
The language ACCEPTS is undecidable.

Theorem 5.6 (EMPTY is undecidable).
The language EMPTY is undecidable.

Theorem 5.7 (EQ is undecidable).
The language EQ is undecidable.

5.3 Undecidability Proofs by Reductions

Theorem 5.8 (HALTS \leq EMPTY).
HALTS \leq EMPTY.

Theorem 5.9 (EMPTY \leq HALTS).
EMPTY \leq HALTS.

Chapter 6
Time Complexity

6.1 Big-O, Big-Omega and Theta

Definition 6.1 (Big-O).
For $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, we write $f(n)=O(g(n))$ if there exist constants $C>0$ and $n_{0}>0$ such that for all $n \geq n_{0}$,

$$
f(n) \leq C g(n)
$$

In this case, we say that $f(n)$ is big-O of $g(n)$.

Definition 6.2 (Big-Omega).
For $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, we write $f(n)=\Omega(g(n))$ if there exist constants $c>0$ and $n_{0}>0$ such that for all $n \geq n_{0}$,

$$
f(n) \geq c g(n)
$$

In this case, we say that $f(n)$ is big-Omega of $g(n)$.

Definition 6.3 (Theta).
For $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, we write $f(n)=\Theta(g(n))$ if

$$
f(n)=O(g(n)) \quad \text { and } \quad f(n)=\Omega(g(n))
$$

This is equivalent to saying that there exists constants $c, C, n_{0}>0$ such that for all $n \geq n_{0}$,

$$
c g(n) \leq f(n) \leq C g(n)
$$

In this case, we say that $f(n)$ is Theta of $g(n) .{ }^{1}$

Proposition 6.4 (Logarithms in different bases).
For any constant $b>1$,

$$
\log _{b} n=\Theta(\log n)
$$

6.2 Worst-Case Running Time of Algorithms

Definition 6.5 (Worst-case running time of an algorithm).
Suppose we are using some computational model in which what constitutes a step in an algorithm is understood. Suppose also that for any input x, we have an explicit definition of its length. The worst-case running time of an algorithm A is a function $T_{A}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
T_{A}(n)=\max _{\substack{\text { instances inputs } x \\ \text { of length } n}} \text { number of steps } A \text { takes on input } x .
$$

We drop the subscript A and just write $T(n)$ when A is clear from the context.

[^4]Definition 6.6 (Names for common growth rates).

$$
\begin{aligned}
\text { Constant time: } & T(n)=O(1) . \\
\text { Logarithmic time: } & T(n)=O(\log n) . \\
\text { Linear time: } & T(n)=O(n) . \\
\text { Quadratic time: } & T(n)=O\left(n^{2}\right) . \\
\text { Polynomial time: } & T(n)=O\left(n^{k}\right) \text { for some constant } k>0 . \\
\text { Exponential time: } & T(n)=O\left(2^{n^{k}}\right) \text { for some constant } k>0 .
\end{aligned}
$$

Proposition 6.7 (Intrinsic complexity of $\left\{0^{k} 1^{k}: k \in \mathbb{N}\right\}$). The intrinsic complexity of $L=\left\{0^{k} 1^{k}: k \in \mathbb{N}\right\}$ is $\Theta(n)$.

6.3 Complexity of Algorithms with Integer Inputs

Definition 6.8 (Integer addition and integer multiplication problems). In the integer addition problem, we are given two n-bit numbers x and y, and the output is their sum $x+y$. In the integer multiplication problem, we are given two n-bit numbers x and y, and the output is their product $x y$.

Theorem 6.9 (Karatsuba algorithm for integer multiplication).
The integer multiplication problem can be solved in time $O\left(n^{1.59}\right)$.

Chapter 7
Stable Matchings

7.1 Stable Matchings

Definition 7.1 (Stable matching problem).
An instance of the stable matching problem is a tuple of sets (X, Y) with $|X|=$ $|Y|$, and a preference list for each element of X and Y. A preference list for an element in X is an ordering of the elements in Y, and a preference list for an element in Y is an ordering of the elements of X. Below is an example of an instance of the stable matching problem:

The output of the stable matching problem is a stable matching, which is a subset S of $\{(x, y): x \in X, y \in Y\}$ with the following properties:
(i) The matching is a perfect matching, which means every $x \in X$ and every $y \in Y$ appear exactly once in S. If $(x, y) \in S$, we say x and y are matched.
(ii) There are no unstable pairs. A pair (x, y) where $x \in X$ and $y \in Y$ is called unstable if $(x, y) \notin S$, but they both prefer each other to the elements they are matched to.

Theorem 7.2 (Gale-Shapley proposal algorithm).
There is a polynomial time algorithm which, given an instance of the stable matching problem, always returns a stable matching.

Definition 7.3 (Best and worst valid partners).
Consider an instance of the stable matching problem. We say that $m \in X$ is a valid partner of $w \in Y$ (or w is a valid partner of m) if there is some stable matching in which m and w are matched. For $u \in X \cup Y$, we define the best valid partner of u, denoted $\operatorname{best}(u)$, to be the highest ranked valid partner of u. Similarly, we define the worst valid partner of u, denoted worst (u), to be the lowest ranked valid partner of u.

Theorem 7.4 (Gale-Shapley is male optimal).
The Gale-Shapley algorithm always matches a male $m \in X$ with its best valid partner, i.e., it returns $\{(m, \operatorname{best}(m)): m \in X\}$.

Chapter 8
Introduction to Graph Theory

8.1 Basic Definitions

Definition 8.1 (Undirected graph).
An undirected graph ${ }^{1} G$ is a pair (V, E), where

- V is a finite non-empty set called the set of vertices (or nodes),
- E is a set called the set of edges, and every element of E is of the form $\{u, v\}$ for distinct $u, v \in V$.

Definition 8.2 (Neighborhood of a vertex).
Let $G=(V, E)$ be a graph, and $e=\{u, v\} \in E$ be an edge in the graph. In this case, we say that u and v are neighbors or adjacent. We also say that u and v are incident to e. For $v \in V$, we define the neighborhood of v, denoted $N(v)$, as the set of all neighbors of v, i.e. $N(v)=\{u:\{v, u\} \in E\}$. The size of the neighborhood, $|N(v)|$, is called the degree of v, and is denoted by $\operatorname{deg}(v)$.

Definition 8.3 (d-regular graphs).
A graph $G=(V, E)$ is called d-regular if every vertex $v \in V$ satisfies $\operatorname{deg}(v)=d$.

Theorem 8.4 (Handshake Theorem).
Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

Definition 8.5 (Paths and cycles).
Let $G=(V, E)$ be a graph. A path of length k in G is a sequence of distinct vertices

$$
v_{0}, v_{1}, \ldots, v_{k}
$$

such that $\left\{v_{i-1}, v_{i}\right\} \in E$ for all $i \in\{1,2, \ldots, k\}$. In this case, we say that the path is from vertex v_{0} to vertex v_{k}.

A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

$$
v_{0}, v_{1}, \ldots, v_{k-1}, v_{0}
$$

such that $v_{0}, v_{1}, \ldots, v_{k-1}$ is a path, and $\left\{v_{0}, v_{k-1}\right\} \in E$. In other words, a cycle is just a "closed" path. The starting vertex in the cycle is not important. So for example,

$$
v_{1}, v_{2}, \ldots, v_{k-1}, v_{0}, v_{1}
$$

would be considered the same cycle. Also, if we list the vertices in reverse order, we consider it to be the same cycle. For example,

$$
v_{0}, v_{k-1}, v_{k-2} \ldots, v_{1}, v_{0}
$$

represents the same cycle as before.
A graph that contains no cycles is called acyclic.

[^5]Definition 8.6 (Connected graph, connected component).
Let $G=(V, E)$ be a graph. We say that two vertices in G are connected if there is a path between those two vertices. We say that G is connected if every pair of vertices in G is connected.

A subset $S \subseteq V$ is called a connected component of G if G restricted to S, i.e. the graph $G^{\prime}=\left(S, E^{\prime}=\{\{u, v\} \in E: u, v \in S\}\right)$, is a connected graph, and S is disconnected from the rest of the graph (i.e. $\{u, v\} \notin E$ when $u \in S$ and $v \notin S$). Note that a connected graph is a graph with only one connected component.

Theorem 8.7 (Min number of edges to connect a graph).
Let $G=(V, E)$ be a connected graph with n vertices and m edges. Then $m \geq n-1$. Furthermore, $m=n-1$ if and only if G is acyclic.

Definition 8.8 (Tree, leaf, internal node).
A graph satisfying two of the following three properties is called a tree:
(i) connected,
(ii) $m=n-1$,
(iii) acyclic.

A vertex of degree 1 in a tree is called a leaf. And a vertex of degree more than 1 is called an internal node.

Definition 8.9 (Directed graph).
A directed graph G is a pair (V, A), where

- V is a non-empty finite set called the set of vertices (or nodes),
- A is a finite set called the set of directed edges (or arcs), and every element of A is a tuple (u, v) for $u, v \in V$. If $(u, v) \in A$, we say that there is a directed edge from u to v. Note that $(u, v) \neq(v, u)$ unless $u=v$.

Definition 8.10 (Neighborhood, out-degree, in-degree, sink, source). Let $G=(V, A)$ be a directed graph. For $u \in V$, we define the neighborhood of $u, N(u)$, as the set $\{v \in V:(u, v) \in A\}$. The out-degree of u, denoted $\operatorname{deg}_{\text {out }}(u)$, is $|N(u)|$. The in-degree of u, denoted $\operatorname{deg}_{\text {in }}(u)$, is the size of the set $\{v \in V:(v, u) \in A\}$. A vertex with out-degree 0 is called a sink. A vertex with in-degree 0 is called a source.

8.2 Graph Algorithms

8.2.1 Graph searching algorithms

Definition 8.11 (Arbitrary-first search (AFS) algorithm).
The arbitrary-first search algorithm, denoted AFS, is the following generic algorithm for searching a given graph. Below, "bag" refers to an arbitrary data structure that allows us to add and retrieve objects.

```
G=(V,E): graph. s: vertex in }V\mathrm{ .
AFS(\langleG,s\rangle):
    Put s into bag.
    While bag is non-empty:
    3 Pick an arbitrary vertex v from bag.
    4 If v}\mathrm{ is unmarked:
5 Mark v.
6 For each neighbor w of v:
7 Put w into bag.
```

Note that when a vertex w is added to the bag, it gets there because it is the neighbor of a vertex v that has been just marked by the algorithm. In this case, we'll say that v is the parent of w (and w is the child of v). Explicitly keeping track of this parent-child relationship is convenient, so we modify the above algorithm to keep track of this information. Below, a tuple of vertices (v, w) has the meaning that vertex v is the parent of w. The initial vertex s has no parent, so we denote this situation by (\perp, s).

```
G=(V,E): graph. s: vertex in V.
AFS(\langleG,s\rangle):
Put ( }\perp,s)\mathrm{ into bag.
While bag is non-empty:
    Pick an arbitrary tuple (p,v) from bag.
4 If v}\mathrm{ is unmarked:
5 Mark v.
6 parent (v) = p.
7 For each neighbor w of v:
            Put (v,w) into bag.
```

Definition 8.12 (Breadth-first search (BFS) algorithm).
The breadth-first search algorithm, denoted BFS, is AFS where the bag is chosen to be a queue data structure.

Definition 8.13 (Depth-first search (DFS) algorithm).
The depth-first search algorithm, denoted DFS, is AFS where the bag is chosen to be a stack data structure.

8.2.2 Minimum spanning tree

Definition 8.14 (Minimum spanning tree (MST) problem).
In the minimum spanning tree problem, the input is a connected undirected graph $G=(V, E)$ together with a cost function $c: E \rightarrow \mathbb{R}^{+}$. The output is a subset of the edges of minimum total cost such that, in the graph restricted to these edges, all the vertices of G are connected. ${ }^{2}$ For convenience, we'll assume that the edges have unique edge costs, i.e. $e \neq e^{\prime} \Longrightarrow c(e) \neq c\left(e^{\prime}\right)$.

[^6]Theorem 8.15 (MST cut property).
Suppose we are given an instance of the MST problem. For any $V^{\prime} \subseteq V$, let $e=$ $\{u, w\}$ be the cheapest edge with the property that $u \in V^{\prime}$ and $w \in V \backslash V^{\prime}$. Then e must be in the minimum spanning tree.

Theorem 8.16 (Jarník-Prim algorithm for MST).
There is an algorithm that solves the MST problem in polynomial time.

8.2.3 Topological sorting

Definition 8.17 (Topological order of a directed graph).
A topological order of an n-vertex directed graph $G=(V, A)$ is a bijection f :
$V \rightarrow\{1,2, \ldots, n\}$ such that if $(u, v) \in A$, then $f(u)<f(v)$.

Definition 8.18 (Topological sorting problem).
In the topological sorting problem, the input is a directed acyclic graph, and the output is a topological order of the graph.

Lemma 8.19 (Acyclic directed graph has a sink).
If a directed graph is acyclic, then it has a sink vertex.

Theorem 8.20 (Topological sort via DFS).
There is a $O(n+m)$-time algorithm that solves the topological sorting problem.

Chapter 9
Matchings in Graphs

9.1 Maximum Matchings

Definition 9.1 (Matching - maximum, maximal, perfect).
A matching in a graph $G=(V, E)$ is a subset of the edges that do not share an endpoint. A maximum matching in G is a matching with the maximum number of edges among all possible matchings. A maximal matching is a matching with the property that if we add any other edge to the matching, it is no longer a matching. ${ }^{1}$ A perfect matching is a matching that covers all the vertices of the graph.

Definition 9.2 (Maximum matching problem).
In the maximum matching problem the input is an undirected graph $G=(V, E)$ and the output is a maximum matching in G.

Definition 9.3 (Augmenting path).
Let $G=(V, E)$ be a graph and let $M \subseteq E$ be a matching in G. An augmenting path in G with respect to M is a path such that
(i) the path is an alternating path, which means that the edges in the path alternate between being in M and not in M
(a single edge which is not in M satisfies this property),
(ii) the first and last vertices in the path are not a part of the matching M.

Theorem 9.4 (Characterization for maximum matchings).
Let $G=(V, E)$ be a graph. A matching $M \subseteq E$ is maximum if and only if there is no augmenting path in G with respect to M.

Definition 9.5 (Bipartite graph).
A graph $G=(V, E)$ is called bipartite if there is a partition ${ }^{2}$ of V into sets X and Y such that all the edges in E have one endpoint in X and the other in Y. Sometimes the bipartition is given explicitly and the graph is denoted by $G=(X, Y, E)$.

Definition 9.6 (k-colorable graphs).
Let $G=(V, E)$ be a graph. Let $k \in \mathbb{N}^{+}$. A k-coloring of V is just a map $\chi: V \rightarrow$ C where C is a set of cardinality k. (Usually the elements of C are called colors. If $k=3$ then $C=\{$ red, green, blue $\}$ is a popular choice. If k is large, we often just call the "colors" $1,2, \ldots, k$.) A k-coloring is said to be legal for G if every edge in E is bichromatic, meaning that its two endpoints have different colors. (I.e., for all $\{u, v\} \in E$ it is required that $\chi(u) \neq \chi(v)$.) Finally, we say that G is k-colorable if it has a legal k-coloring.

Theorem 9.7 (Characterization of bipartite graphs).
A graph is bipartite if and only if it contains no odd-length cycles.

[^7]Theorem 9.8 (Finding a maximum matching in bipartite graphs).
There is a polynomial time algorithm to solve the maximum matching problem in bipartite graphs.

Theorem 9.9 (Hall's Theorem).
Let $G=(X, Y, E)$ be a bipartite graph. For a subset S of the vertices, let $N(S)=$ $\cup_{v \in S} N(v)$. Then G has a matching covering all the vertices in X if and only iffor all $S \subseteq X$, we have $|S| \leq|N(S)|$.

Corollary 9.10 (Characterization of bipartite graphs with perfect matchings). Let $G=(X, Y, E)$ be a bipartite graph. Then G has a perfect matching if and only if $|X|=|Y|$ and for any $S \subseteq X$, we have $|S| \leq|N(S)|$.

Chapter 10

Boolean Circuits

10.1 Basic Definitions

Definition 10.1 (Boolean circuit).
A Boolean circuit with n-input variables $(n \geq 0)$ is a directed acyclic graph with the following properties. Each node of the graph is called a gate and each directed edge is called a wire. There are 5 types of gates that we can choose to include in our circuit: AND gates, OR gates, NOT gates, input gates, and constant gates. There are 2 constant gates, one labeled 0 and one labeled 1 . These gates have in-degree/fan-in ${ }^{1} 0$. There are n input gates, one corresponding to each input variable. These gates also have in-degree/fan-in 0. An AND gate corresponds to the binary AND operation \wedge and an OR gate corresponds to the binary OR operation \vee. These gates have in-degree/fan-in 2. A NOT gate corresponds to the unary NOT operation \neg, and has in-degree/fan-in 1. One of the gates in the circuit is labeled as the output gate. Gates can have out-degree more than 1 , with the exception of the output gate, which has out-degree 0 .

For each $0 / 1$ assignment to the input variables, the Boolean circuit produces a one-bit output. The output of the circuit is the output of the gate that is labeled as the output gate. The output is calculated naturally using the truth tables of the operations corresponding to the gates. The input-output behavior of the circuit defines a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and in this case, we say that the circuit computes this function.

Definition 10.2 (Circuit family).
A circuit family C is a collection of circuits, $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$, such that each C_{n} is a circuit that has access to n input gates.

Definition 10.3 (A circuit family deciding/computing a decision problem). Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a decision problem and let $f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ be the restriction of f to words of length n. We say that a circuit family $C=$ $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ decides/computes f if C_{n} computes f^{n} for every n.

Definition 10.4 (Circuit size and complexity).
The size of a circuit is defined to be the number of gates in the circuit, excluding the constant gates 0 and 1 . The size of a circuit family $C=\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ is a function $S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(n)$ equals the size of C_{n}. The circuit complexity of a decision problem $f=\left(f^{0}, f^{1}, f^{2}, \ldots\right)$ is the size of the minimal circuit family that decides f. In other words, the circuit complexity of f is defined to be a function $C C_{f}: \mathbb{N} \rightarrow \mathbb{N}$ such that $C C_{f}(n)$ is the minimum size of a circuit computing f^{n}. Using the correspondence between decision problems and languages, we can also define the circuit complexity of a language in the same manner. ${ }^{2}$

10.2 3 Theorems on Circuits

Theorem $10.5\left(O\left(2^{n}\right)\right.$ upper bound on circuit complexity).
Any language $L \subseteq\{0,1\}^{*}$ can be computed by a circuit family of size $O\left(2^{n}\right)$.

[^8]Proposition 10.6 (Number of Boolean functions).
The set of all functions of the form $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has size $2^{2^{n}}$.

Theorem 10.7 (Shannon's Theorem).
There exists a language $L \subseteq\{0,1\}^{*}$ such that any circuit family computing L must have size at least $2^{n} / 5 n$.

Lemma 10.8 (Counting circuits).
The number of possible circuits of size at most s is less than or equal to $2^{5 s \log s}$.

Theorem 10.9 (Efficient TM implies efficient circuit).
Let $L \subseteq\{0,1\}^{*}$ be a language which can be decided in $O(T(n))$ time. Then L can be computed by a circuit family of size $O\left(T(n)^{2}\right)$.

Definition 10.10 (Complexity class P).
We denote by P the set of all languages that can be decided in polynomial-time, i.e., in time $O\left(n^{k}\right)$ for some constant $k>0$.

Corollary 10.11 (A language in P has polynomial circuit complexity).
If $L \in \mathrm{P}$, then L can be computed by a circuit family of polynomial size. Equivalently, if L cannot be computed by a circuit family of polynomial size, then $L \notin \mathrm{P}$.

Chapter 11
Polynomial-Time Reductions

11.1 Cook and Karp Reductions

Definition 11.1 (k-Coloring problem).
In the k-coloring problem, the input is an undirected graph $G=(V, E)$, and the output is True if and only if the graph is k-colorable (see Definition 9.6 (k-colorable graphs)). We denote this problem by k COL. The corresponding language is

$$
\{\langle G\rangle: G \text { is a } k \text {-colorable graph }\} .
$$

Definition 11.2 (Clique problem).
Let $G=(V, E)$ be an undirected graph. A subset of the vertices is called a clique if there is an edge between any two vertices in the subset. We say that G contains a k-clique if there is a subset of the vertices of size k that forms a clique.

In the clique problem, the input is an undirected graph $G=(V, E)$ and a number $k \in \mathbb{N}^{+}$, and the output is True if and only if the graph contains a k-clique. We denote this problem by CLIQUE. The corresponding language is

$$
\left\{\langle G, k\rangle: G \text { is a graph, } k \in \mathbb{N}^{+}, G \text { contains a } k \text {-clique }\right\} .
$$

Definition 11.3 (Independent set problem).
Let $G=(V, E)$ be an undirected graph. A subset of the vertices is called an independent set if there is no edge between any two vertices in the subset. We say that G contains an independent set of size k if there is a subset of the vertices of size k that forms an independent set.

In the independent set problem, the input is an undirected graph $G=(V, E)$ and a number $k \in \mathbb{N}^{+}$, and the output is True if and only if the graph contains an independent set of size k. We denote this problem by IS. The corresponding language is
$\left\{\langle G, k\rangle: G\right.$ is a graph, $k \in \mathbb{N}^{+}, G$ contains an independent set of size $\left.k\right\}$.

Definition 11.4 (Circuit satisfiability problem).
We say that a circuit is satisfiable if there is $0 / 1$ assignment to the input gates that makes the circuit output 1 . In the circuit satisfiability problem, the input is a Boolean circuit, and the output is True if and only if the circuit is satisfiable. We denote this problem by CIRCUIT-SAT. The corresponding language is

$$
\{\langle C\rangle: C \text { is a Boolean circuit that is satisfiable }\} .
$$

Definition 11.5 (Boolean satisfiability problem).
Let x_{1}, \ldots, x_{n} be Boolean variables, i.e., variables that can be assigned True or False. A literal refers to a Boolean variable or its negation. A clause is an "OR" of literals. For example, $x_{1} \vee \neg x_{3} \vee x_{4}$ is a clause. A Boolean formula in conjunctive normal form (CNF) is an "AND" of clauses. For example,

$$
\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{1} \vee \neg x_{5}\right)
$$

is a CNF formula. We say that a Boolean formula is satisfiable if there is a $0 / 1$ assignment to the Boolean variables that makes the formula evaluate to 1 .

In the CNF satisfiability problem, the input is a CNF formula, and the output is True if and only if the formula is satisfiable. We denote this problem by SAT. The corresponding language is

$$
\{\langle\varphi\rangle: \varphi \text { is a satisfiable CNF formula }\} .
$$

In a variation of SAT, we restrict the input formula such that every clause has exactly 3 literals (we call such a formula a 3CNF formula). This variation of the problem is denoted by 3SAT.

Definition 11.6 (Karp reduction: Polynomial-time many-one reduction).
Let A and B be two languages. Suppose that there is a polynomial-time computable function (also called a polynomial-time transformation) $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $x \in A$ if and only if $f(x) \in B$. Then we say that there is a polynomialtime many-one reduction (or a Karp reduction, named after Richard Karp) from A to B, and denote it by $A \leq_{m}^{P} B$.

Theorem 11.7 (CLIQUE reduces to IS).
CLIQUE \leq_{m}^{P} IS.

Theorem 11.8 (CIRCUIT-SAT reduces to 3COL). CIRCUIT-SAT $\leq_{m}^{P} 3$ COL.

11.2 Hardness and Completeness

Definition 11.9 (\mathcal{C}-hard, \mathcal{C}-complete).
Let \mathcal{C} be a set of languages containing P.

- We say that L is \mathcal{C}-hard (with respect to Cook reductions) if for all languages $K \in \mathcal{C}, K \leq^{P} L$.
(With respect to polynomial time decidability, a \mathcal{C}-hard language is at least as "hard" as any language in \mathcal{C}.)
- We say that L is \mathcal{C}-complete if L is \mathcal{C}-hard and $L \in \mathcal{C}$.
(A \mathcal{C}-complete language represents the "hardest" language in \mathcal{C} with respect to polynomial time decidability.)

Chapter 12
Non-Deterministic Polynomial Time

12.1 Non-Deterministic Polynomial Time NP

Definition 12.1 (Non-deterministic polynomial time, complexity class NP). Fix some alphabet Σ. We say that a language L can be decided in non-deterministic polynomial time if there exists
(i) a polynomial-time decider TM V that takes two strings as input, and
(ii) a constant $k>0$,
such that for all $x \in \Sigma^{*}$:

- if $x \in L$, then there exists $u \in \Sigma^{*}$ with $|u| \leq|x|^{k}$ such that $V(x, u)$ accepts,
- if $x \notin L$, then for all $u \in \Sigma^{*}, V(x, u)$ rejects.

If $x \in L$, a string u that makes $V(x, u)$ accept is called a proof (or certificate) of x being in L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in nondeterministic polynomial time.

Proposition 12.2 (3COL is in NP).
$3 C O L \in N P$.

Proposition 12.3 (CIRCUIT-SAT is in NP).
CIRCUIT-SAT \in NP.

Proposition 12.4 (P is contained in NP).
$P \subseteq N P$.

Definition 12.5 (Complexity class EXP).
We denote by EXP the set of all languages that can be decided in at most exponential-time, i.e., in time $O\left(2^{n^{C}}\right)$ for some constant $C>0$.

12.2 NP-complete problems

Theorem 12.6 (Cook-Levin Theorem). CIRCUIT-SAT is NP-complete.

Theorem 12.7 (3COL is NP-complete). 3COL is NP-complete.

Theorem 12.8 (3SAT is NP-complete). 3SAT is NP-complete.

Theorem 12.9 (CLIQUE is NP-complete).
CLIQUE is NP-complete.

Theorem 12.10 (IS is NP-complete).
IS is NP-complete.

12.3 Proof of Cook-Levin Theorem

Chapter 13
Approximation Algorithms

13.1 Basic Definitions

Definition 13.1 (Optimization problem).
A minimization optimization problem is a function $f: \Sigma^{*} \times \Sigma^{*} \rightarrow \mathbb{R}^{\geq 0} \cup\{$ no $\}$. If $f(x, y)=\alpha \in \mathbb{R}^{\geq 0}$, we say that y is a solution to x with value α. If $f(x, y)=$ no, then y is not a solution to x. We let $\mathrm{OPT}_{f}(x)$ denote the minimum $f(x, y)$ among all solutions y to $x .{ }^{1}$ We drop the subscript f, and just write $\operatorname{OPT}(x)$, when f is clear from the context.

In a maximization optimization problem, $\mathrm{OPT}_{f}(x)$ is defined using a maximum rather than a minimum.

We say that an optimization problem f is computable if there is an algorithm such that given as input $x \in \Sigma^{*}$, it produces as output a solution y to x such that $f(x, y)=\mathrm{OPT}(x)$. We often describe an optimization problem by describing the input and a corresponding output (i.e. a solution y such that $f(x, y)=\mathrm{OPT}(x))$.

Definition 13.2 (Optimization version of the Vertex-cover problem).
Given an undirected graph $G=(V, E)$, a vertex cover in G is a set $S \subseteq V$ such that for all edges in E, at least one of its endpoints is in $S .^{2}$

The VERTEX-COVER problem is the following. Given as input an undirected graph G together with an integer k, output True if and only if there is a vertex cover in G of size at most k. The corresponding language is

$$
\{\langle G, k\rangle: G \text { is a graph that has a vertex cover of size at most } k\} .
$$

In the optimization version of VERTEX-COVER, we are given as input an undirected graph G and the output is a vertex cover of minimum size. We refer to this problem as MIN-VC.

Using the notation in Definition 13.1 (Optimization problem), the corresponding function f is defined as follows. Let $x=\langle G\rangle$ for some graph G. If y represents a vertex cover in G, then $f(x, y)$ is defined to be the size of the set that y represents. Otherwise $f(x, y)=$ no.

Definition 13.3 (Approximation algorithm).

- Let f be a minimization optimization problem and let $\alpha>1$ be some parameter. We say that an algorithm A is an α-approximation algorithm for f if for all instances $x, f(x, A(x)) \leq \alpha \cdot \operatorname{OPT}(x)$.
- Let f be a maximization optimization problem and let $0<\beta<1$ be some parameter. We say that an algorithm A is a β-approximation algorithm for f if for all instances $x, f(x, A(x)) \geq \beta \cdot \operatorname{OPT}(x)$.

13.2 Examples of Approximation Algorithms

Lemma 13.4 (Vertex cover vs matching).
Given a graph $G=(V, E)$, let $M \subseteq E$ be a matching in G, and let $S \subset V$ be a vertex cover in G. Then, $|S| \geq|M|$.

[^9]Theorem 13.5 (Gavril's Algorithm).
There is a polynomial-time 2-approximation algorithm for the optimization problem MIN-VC.

Definition 13.6 (Max-cut problem).
Let $G=(V, E)$ be a graph. Given a coloring of the vertices with 2 colors, we say that an edge $e=\{u, v\}$ is cut if u and v are colored differently. In the maxcut problem, the input is a graph G, and the output is a coloring of the vertices with 2 colors that maximizes the number of cut edges. We denote this problem by MAX-CUT.

Theorem 13.7 ((1/2)-approximation algorithm for MAX-CUT).
There is a polynomial-time $\frac{1}{2}$-approximation algorithm for the optimization problem MAX-CUT.

Definition 13.8 (Traveling salesperson problem (TSP)).
In the Traveling salesperson problem, the input is a connected graph $G=(V, E)$ together with edge costs $c: E \rightarrow \mathbb{N}$. The output is a Hamiltonian cycle that minimizes the total cost of the edges in the cycle, if one exists.

A popular variation of this problem is called Metric-TSP. In this version of the problem, instead of outputting a Hamiltonian cycle of minimum cost, we output a "tour" that starts and ends at the same vertex and visits every vertex of the graph at least once (so the tour is allowed to visit a vertex more than once). In other words, the output is a list of vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}, v_{i_{1}}$ such that the vertices are not necessarily unique, all the vertices of the graph appear in the list, any two consecutive vertices in the list form an edge, and the total cost of the edges is minimized.

Theorem 13.9 (2-approximation algorithm for Metric-TSP).
There is a polynomial-time 2-approximation algorithm for Metric-TSP.

Definition 13.10 (Max-coverage problem).
In the max-coverage problem, the input is a set X, a collection of (possibly intersecting) subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq X$ (we assume the union of all the sets is X), and a number $k \in\{0,1, \ldots, m\}$. The output is a set $T \subseteq\{1,2, \ldots, m\}$ of size k that maximizes $\left|\cup_{i \in T} S_{i}\right|$ (the elements in this intersection are called covered elements). We denote this problem by MAX-COVERAGE.

Chapter 14

Probability Theory

14.1 Probability I: The Basics

14.1.1 Basic Definitions

Definition 14.1 (Finite probability space, sample space, probability distribution).
A finite probability space is a tuple $(\Omega, \mathbf{P r})$, where

- Ω is a non-empty finite set called the sample space;
- $\operatorname{Pr}: \Omega \rightarrow[0,1]$ is a function, called the probability distribution, with the property that $\sum_{\ell \in \Omega} \operatorname{Pr}[\ell]=1$.

The elements of Ω are called outcomes or samples. If $\operatorname{Pr}[\ell]=p$, then we say that the probability of outcome ℓ is p.

Definition 14.2 (Uniform distribution).
If a probability distribution $\operatorname{Pr}: \Omega \rightarrow[0,1]$ is such that $\operatorname{Pr}[\ell]=1 /|\Omega|$ for all $\ell \in \Omega$, then we call it a uniform distribution.

Definition 14.3 (Event).
Let $(\Omega, \operatorname{Pr})$ be a probability space. Any subset of outcomes $E \subseteq \Omega$ is called an event. We abuse notation and write $\operatorname{Pr}[E]$ to denote $\sum_{\ell \in E} \operatorname{Pr}[\ell]$. Using this notation, $\operatorname{Pr}[\emptyset]=0$ and $\operatorname{Pr}[\Omega]=1$. We use the notation \bar{E} to denote the event $\Omega \backslash E$.

Definition 14.4 (Disjoint events).
We say that two events A and B are disjoint if $A \cap B=\emptyset$.

Definition 14.5 (Conditional probability).
Let B be an event with $\operatorname{Pr}[B] \neq 0$. The conditional probability of outcome $\ell \in \Omega$ given B, denoted $\operatorname{Pr}[\ell \mid B]$, is defined as

$$
\operatorname{Pr}[\ell \mid B]= \begin{cases}0 & \text { if } \ell \notin B \\ \frac{\operatorname{Pr}[\ell]}{\mathbf{P r}[B]} & \text { if } \ell \in B\end{cases}
$$

For an event A, the conditional probability of A given B, denoted $\operatorname{Pr}[A \mid B]$, is defined as

$$
\begin{equation*}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} \tag{14.1}
\end{equation*}
$$

14.1.2 Three Useful Rules

Proposition 14.6 (Chain rule).
Let $n \geq 2$ and let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]= \\
& \quad \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right] .
\end{aligned}
$$

Proposition 14.7 (Law of total probability).
Let $A_{1}, A_{2}, \ldots, A_{n}, B$ be events such that the A_{i} 's form a partition of the sample space Ω. Then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\mathbf{P r}\left[B \cap A_{2}\right]+\cdots+\mathbf{P r}\left[B \cap A_{n}\right]
$$

Equivalently,
$\operatorname{Pr}[B]=\mathbf{P r}\left[A_{1}\right] \cdot \mathbf{P r}\left[B \mid A_{1}\right]+\mathbf{P r}\left[A_{2}\right] \cdot \mathbf{P r}\left[B \mid A_{2}\right]+\cdots+\mathbf{P r}\left[A_{n}\right] \cdot \mathbf{P r}\left[B \mid A_{n}\right]$.

Proposition 14.8 (Bayes' rule).
Let A and B be events. Then,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}
$$

14.1.3 Independence

Definition 14.9 (Independent events).

- Let A and B be two events. We say that A and B are independent if $\operatorname{Pr}[A \cap$ $B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$. Note that if $\operatorname{Pr}[B] \neq 0$, then this is equivalent to $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$. If $\operatorname{Pr}[A] \neq 0$, it is also equivalent to $\operatorname{Pr}[B \mid A]=$ $\operatorname{Pr}[B]$.
- Let $A_{1}, A_{2}, \ldots, A_{n}$ be events with non-zero probabilities. We say that A_{1}, \ldots, A_{n} are independent if for any subset $S \subseteq\{1,2, \ldots, n\}$,

$$
\operatorname{Pr}\left[\bigcap_{i \in S} A_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[A_{i}\right]
$$

14.2 Probability II: Random Variables

14.2.1 Basics of random variables

Definition 14.10 (Random variable).
A random variable is a function $\boldsymbol{X}: \Omega \rightarrow \mathbb{R}$.

Definition 14.11 (Common events through a random variable).
Let \boldsymbol{X} be a random variable and $x \in \mathbb{R}$ be some real value. We use
$\boldsymbol{X}=x \quad$ to denote the event $\{\ell \in \Omega: \boldsymbol{X}(\ell)=x\}$,
$\boldsymbol{X} \leq x \quad$ to denote the event $\{\ell \in \Omega: \boldsymbol{X}(\ell) \leq x\}$,
$\boldsymbol{X} \geq x \quad$ to denote the event $\{\ell \in \Omega: \boldsymbol{X}(\ell) \geq x\}$,
$\boldsymbol{X}<x \quad$ to denote the event $\{\ell \in \Omega: \boldsymbol{X}(\ell)<x\}$,
$\boldsymbol{X}>x \quad$ to denote the event $\{\ell \in \Omega: \boldsymbol{X}(\ell)>x\}$.
For example, $\operatorname{Pr}[\boldsymbol{X}=x]$ denotes $\operatorname{Pr}[\{\ell \in \Omega: \boldsymbol{X}(\ell)=x\}]$. More generally, for $S \subseteq \mathbb{R}$, we use

$$
\boldsymbol{X} \in S \quad \text { to denote the event }\{\ell \in \Omega: \boldsymbol{X}(\ell) \in S\}
$$

Definition 14.12 (Probability mass function (PMF)).
Let $\boldsymbol{X}: \Omega \rightarrow \mathbb{R}$ be a random variable. The probability mass function (PMF) of \boldsymbol{X} is a function $p_{\boldsymbol{X}}: \mathbb{R} \rightarrow[0,1]$ such that for any $x \in \mathbb{R}, p_{\boldsymbol{X}}(x)=\operatorname{Pr}[\boldsymbol{X}=x]$.

Definition 14.13 (Expected value of a random variable).
Let \boldsymbol{X} be a random variable. The expected value of \boldsymbol{X}, denoted $\mathbf{E}[\boldsymbol{X}]$, is defined as follows:

$$
\mathbf{E}[\boldsymbol{X}]=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \boldsymbol{X}(\ell)
$$

Equivalently,

$$
\mathbf{E}[\boldsymbol{X}]=\sum_{x \in \operatorname{range}(\boldsymbol{X})} \boldsymbol{P r}[\boldsymbol{X}=x] \cdot x
$$

where range $(\boldsymbol{X})=\{\boldsymbol{X}(\ell): \ell \in \Omega\}$.

Proposition 14.14 (Linearity of expectation).
Let \boldsymbol{X} and \boldsymbol{Y} be two random variables, and let $c_{1}, c_{2} \in \mathbb{R}$ be some constants. Then $\mathbf{E}\left[c_{1} \boldsymbol{X}+c_{2} \boldsymbol{Y}\right]=c_{1} \mathbf{E}[\boldsymbol{X}]+c_{2} \mathbf{E}[\boldsymbol{Y}]$.

Corollary 14.15 (Linearity of expectation 2).
Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$ be random variables, and $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$ be some constants. Then

$$
\mathbf{E}\left[c_{1} \boldsymbol{X}_{1}+c_{2} \boldsymbol{X}_{2}+\cdots+c_{n} \boldsymbol{X}_{n}\right]=c_{1} \mathbf{E}\left[\boldsymbol{X}_{1}\right]+c_{2} \mathbf{E}\left[\boldsymbol{X}_{2}\right]+\cdots+c_{n} \mathbf{E}\left[\boldsymbol{X}_{n}\right]
$$

In particular, when all the c_{i} 's are 1, we get

$$
\mathbf{E}\left[\boldsymbol{X}_{1}+\boldsymbol{X}_{2}+\cdots+\boldsymbol{X}_{n}\right]=\mathbf{E}\left[\boldsymbol{X}_{1}\right]+\mathbf{E}\left[\boldsymbol{X}_{2}\right]+\cdots+\mathbf{E}\left[\boldsymbol{X}_{n}\right]
$$

Definition 14.16 (Indicator random variable).
Let $E \subseteq \Omega$ be some event. The indicator random variable with respect to E is denoted by \boldsymbol{I}_{E} and is defined as

$$
\boldsymbol{I}_{E}(\ell)= \begin{cases}1 & \text { if } \ell \in E \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 14.17 (Expectation of an indicator random variable).
Let E be an event. Then $\mathbf{E}\left[\boldsymbol{I}_{E}\right]=\operatorname{Pr}[E]$.

Definition 14.18 (Conditional expectation).
Let \boldsymbol{X} be a random variable and E be an event. The conditional expectation of \boldsymbol{X} given the event E, denoted by $\mathbf{E}[\boldsymbol{X} \mid E]$, is defined as

$$
\mathbf{E}[\boldsymbol{X} \mid E]=\sum_{x \in \operatorname{range}(\boldsymbol{X})} x \cdot \operatorname{Pr}[\boldsymbol{X}=x \mid E]
$$

Proposition 14.19 (Law of total expectation).
Let \boldsymbol{X} be a random variable and $A_{1}, A_{2}, \ldots, A_{n}$ be events that partition the sample space Ω. Then

$$
\mathbf{E}[\boldsymbol{X}]=\mathbf{E}\left[\boldsymbol{X} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{1}\right]+\mathbf{E}\left[\boldsymbol{X} \mid A_{2}\right] \cdot \operatorname{Pr}\left[A_{2}\right]+\cdots+\mathbf{E}\left[\boldsymbol{X} \mid A_{n}\right] \cdot \operatorname{Pr}\left[A_{n}\right] .
$$

Definition 14.20 (Independent random variables).
Two random variables \boldsymbol{X} and \boldsymbol{Y} are independent if for all $x, y \in \mathbb{R}$, the events $\boldsymbol{X}=x$ and $\boldsymbol{Y}=y$ are independent. The definition generalizes to more than two random variables analogous to Definition 14.9 (Independent events).

14.2.2 The most fundamental inequality in probability theory

Theorem 14.21 (Markov's inequality).
Let \boldsymbol{X} be a non-negative random variable with non-zero expectation. Then for any $c>0$,

$$
\operatorname{Pr}[\boldsymbol{X} \geq c \mathbf{E}[\boldsymbol{X}]] \leq \frac{1}{c}
$$

14.2.3 Three popular random variables

Definition 14.22 (Bernoulli random variable).
Let $0<p<1$ be some parameter. If \boldsymbol{X} is a random variable with probability mass function $p_{\boldsymbol{X}}(1)=p$ and $p_{\boldsymbol{X}}(0)=1-p$, then we say that \boldsymbol{X} has a Bernoulli distribution with parameter p (we also say that \boldsymbol{X} is a Bernoulli random variable). We write $\boldsymbol{X} \sim \operatorname{Bernoulli}(p)$ to denote this. The parameter p is often called the success probability.

Definition 14.23 (Binomial random variable).
Let $\boldsymbol{X}=\boldsymbol{X}_{1}+\boldsymbol{X}_{2}+\cdots+\boldsymbol{X}_{n}$, where the \boldsymbol{X}_{i} 's are independent and for all $i, \boldsymbol{X}_{i} \sim$ $\operatorname{Bernoulli}(p)$. Then we say that \boldsymbol{X} has a binomial distribution with parameters n and p (we also say that \boldsymbol{X} is a binomial random variable). We write $\boldsymbol{X} \sim$ $\operatorname{Bin}(n, p)$ to denote this.

Definition 14.24 (Geometric random variable).
Let \boldsymbol{X} be a random variable with probability mass function $p_{\boldsymbol{X}}$ such that for $n \in\{1,2, \ldots\}, p_{\boldsymbol{X}}(n)=(1-p)^{n-1} p$. Then we say that \boldsymbol{X} has a geometric distribution with parameter p (we also say that \boldsymbol{X} is a geometric random variable). We write $\boldsymbol{X} \sim \operatorname{Geometric}(p)$ to denote this.

Chapter 15

Randomized Algorithms

15.1 Monte Carlo and Las Vegas Algorithms

Definition 15.1 (Monte Carlo algorithm).
Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem. Let $0 \leq \epsilon<1$ be some parameter and $T: \mathbb{N} \rightarrow \mathbb{N}$ be some function. Suppose A is a randomized algorithm such that

- for all $x \in \Sigma^{*}, \operatorname{Pr}[A(x) \neq f(x)] \leq \epsilon ;$
- for all $x \in \Sigma^{*}, \operatorname{Pr}[$ number of steps $A(x)$ takes is at most $T(|x|)]=1$.
(Note that the probabilities are over the random choices made by A.) Then we say that A is a $T(n)$-time Monte Carlo algorithm that computes f with ϵ probability of error.

Definition 15.2 (Las Vegas algorithm).
Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem. Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be some function. Suppose A is a randomized algorithm such that

- for all $x \in \Sigma^{*}, \operatorname{Pr}[A(x)=f(x)]=1$, where the probability is over the random choices made by A;
- for all $x \in \Sigma^{*}, \mathbf{E}[$ number of steps $A(x)$ takes $] \leq T(|x|)$.

Then we say that A is a $T(n)$-time Las Vegas algorithm that computes f.

15.2 Monte Carlo Algorithm for the Minimum Cut Problem

Definition 15.3 (Minimum cut problem).
In the minimum cut problem, the input is a connected undirected graph G, and the output is a 2 -coloring of the vertices such that the number of cut edges is minimized. (See Definition 13.6 (Max-cut problem) for the definition of a cut edge.) Equivalently, we want to output a non-empty subset $S \subsetneq V$ such that the number of edges between S and $V \backslash S$ is minimized. Such a set S is called a cut and the size of the cut is the number of edges between S and $V \backslash S$ (note that the size of the cut is not the number of vertices). We denote this problem by MIN-CUT.

Definition 15.4 (Multi-graph).
A multi-graph $G=(V, E)$ is an undirected graph in which E is allowed to be a multi-set. In other words, a multi-graph can have multiple edges between two vertices. ${ }^{1}$

Definition 15.5 (Contraction of two vertices in a graph).
Let $G=(V, E)$ be a multi-graph and let $u, v \in V$ be two vertices in the graph. Contraction of u and v produces a new multi-graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Informally, in G^{\prime}, we collapse/contract the vertices u and v into one vertex and preserve the edges between these two vertices and the other vertices in the graph. Formally, we remove the vertices u and v, and create a new vertex called $u v$, i.e. $V^{\prime}=$ $V \backslash\{u, v\} \cup\{u v\}$. The multi-set of edges E^{\prime} is defined as follows:

[^10]- for each $\{u, w\} \in E$ with $w \neq v$, we add $\{u v, w\}$ to E^{\prime};
- for each $\{v, w\} \in E$ with $w \neq u$, we add $\{u v, w\}$ to E^{\prime};
- for each $\left\{w, w^{\prime}\right\} \in E$ with $w, w^{\prime} \notin\{u, v\}$, we add $\left\{w, w^{\prime}\right\}$ to E^{\prime}.

Below is an example:

Theorem 15.6 (Contraction algorithm for min cut).
There is a polynomial-time Monte-Carlo algorithm that solves the MIN-CUT problem with error probability at most $1 / e^{n}$, where n is the number of vertices in the input graph.

[^0]: ${ }^{1}$ We can omit parentheses as the order in which the concatenation • is applied does not matter.
 ${ }^{2}$ We assume you know what a countable set is, however, we will review this concept in a future lecture.
 ${ }^{3}$ Note that this angle-bracket notation does not specify the underlying encoding function as the particular choice of encoding function is often unimportant.
 ${ }^{4}$ Not every set is encodable. Can you figure out exactly which sets are encodable?

[^1]: ${ }^{1}$ Here the word "accept" is overloaded since we also use it in the context of a DFA accepting a string. However, this usually does not create any ambiguity. Note that the letter L is also overloaded since we often use it to denote a language $L \subseteq \Sigma^{*}$. In this definition, you see that it can also denote a function that maps a DFA to a language. Again, this overloading should not create any ambiguity.

[^2]: ${ }^{1}$ Supernerd note: we will always assume Q and Γ are disjoint sets.
 ${ }^{2}$ There are some technicalities: The string u cannot start with \sqcup and the string v cannot end with \sqcup. This is so that the configuration is always unique. Also, if $v=\epsilon$ it means the head is pointing at the \sqcup immediately to the right of u.

[^3]: ${ }^{1}$ Even though not explicitly stated, $|B| \geq|A|$ has the same meaning as $|A| \leq|B|$.
 ${ }^{2}$ Similar to above, $|B|>|A|$ has the same meaning as $|A|<|B|$.

[^4]: ${ }^{1}$ The reason we don't call it big-Theta is that there is no separate notion of little-theta, whereas little-o $o(\cdot)$ and little-omega $\omega(\cdot)$ have meanings separate from big-O and big-Omega. We don't cover little-o and little-omega in this course.

[^5]: ${ }^{1}$ Often the word "undirected" is omitted.

[^6]: ${ }^{2}$ Obviously this subset of edges would not contain a cycle since if it did, we could remove any edge on the cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set forms a tree.

[^7]: ${ }^{1}$ Note that a maximal matching is not necessarily a maximum matching, but a maximum matching is always a maximal matching.
 ${ }^{2}$ Recall that a partition of V into X and Y means that X and Y are disjoint and $X \cup Y=V$.

[^8]: ${ }^{1}$ The in-degree of a gate is also known as the fan-in of the gate.
 ${ }^{2}$ Note that circuit complexity corresponds to the intrinsic complexity of the language with respect to the computational model of Boolean circuits. In the case of Boolean circuits, intrinsic complexity (i.e. circuit complexity) is well-defined.

[^9]: ${ }^{1}$ There are a few technicalities. We will assume that f is such that every x has at least one solution y, and that the minimum always exists.
 ${ }^{2}$ We previously called such a set a popular set.

[^10]: ${ }^{1}$ Note that this definition does not allow for self-loops.

