
15-251: Great Theoretical Ideas In Computer Science

Recitation 10 : Approximation Algorithms

Lecture Review

• The goal of an optimization problem is to find the minimum (or maximum) value under some
constraints

• OPT(I) is the value of the optimal solution to an instance I of an optimization problem

• We say an algorithm A for an optimization problem is a factor-α approximation if for all
instances I of the problem A outputs a solution that is at least as good as α · OPT(I).

Max(ish)-Cut

We define the Max-Cut problem as follows:

Let G = (V,E) be a graph. Given a coloring of the vertices with 2 colors, we say that an edge
e = {u, v} is cut if u and v are colored differently. In the Max-Cut problem, the input is a graph G,
and the output is a coloring of the vertices with 2 colors that maximizes the number of cut edges.

Consider the following approximation algorithm for the Max-Cut problem:

def MaxCutApprox(G):

• cut = ∅

• improved = true

• while (improved):

– improved = false

– for v in G:

∗ if adding v to cut increases cutEdges(cut):

· cut = cut ∪ {v}
· improved = true

• return cut

(a) Prove that this algorithm is poly-time.

(b) Prove that this algorithm is a 1
2 -approximation for Max-Cut.



Pokémon Coverage

Consider a set of Pokémon and a set of trainers each having a subset of these Pokémon. Given k
(assuming k is less than the number of trainers), the problem is to maximize the number of distinct
Pokémon covered. Prove that there exists a polynomial-time (1− 1/e)-approximation algorithm for
this problem by considering the following greedy algorithm and by using the following steps:

On input S1, . . . Sm (each set correponds to the Pokémon that a given trainer has) and k (the
number of trainers chosen):

• Let T = ∅ (keeping track of trainers chosen)

• Let U = ∅ (keeping track of Pokémon covered)

• Repeat k times:

– Pick j such that j 6∈ T and |Sj − U | is maximized.

– Add j to T.

– Update U to U ∪ Sj .

• Output T .

(a) Show that the algorithm runs in polynomial time.

(b) Let T ∗ denote the optimum solution, and let U∗ = ∪j∈T ∗Sj . Note that the value of the
optimum solution is |U∗|. Define Ui to be set U in the above algorithm after i iterations of

the loop. Let ri = |U∗| − |Ui|. Prove that ri ≤ (1− 1
k )

i|U∗|.

(c) Using the inequality 1 − 1
k ≤ e−

1
k , conclude that the algorithm is a (1 − 1

e )-approximation
algorithm for the problem.


