15-251: Great Theoretical Ideas In Computer Science

Recitation 4

Announcements

Reminders:

- Homework Solution Sessions Saturday and Sunday 12:30-1:30 in GHC 4215
- Remember to submit answers to the weekly quiz by 9pm Saturday.

These Decidable Definitions Have Undecidable Ends

- A decider is a TM that halts on all inputs.
- A language L is **undecidable** if there is no TM M that halts on all inputs such that M(x) accepts if and only if $x \in L$.
- A language A reduces to B if it is possible to decide A using an algorithm that decides B as a subroutine. Denote this as $A \leq B$ (read: B is at least as hard as A)
- Countability cheat sheet: You are given a set A. Is it countable or uncountable?

$$|A| \leq |\mathbb{N}|$$
 (A is countable)

- Show directly an injection from A to \mathbb{N} $(A \hookrightarrow \mathbb{N})$ or a surjection from \mathbb{N} onto A $(\mathbb{N} \twoheadrightarrow A)$
- Show $|A| \leq |B|$, where B is one of \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, \mathbb{Q} , Σ^* a, $\mathbb{Q}[x]$, etc.

$$|A| > |\mathbb{N}|$$
 (A is uncountable)

- Show directly using a diagonalization argument.
- Show that $|\{0,1\}^{\infty}| \leq |A|$, i.e. an injection from $\{0,1\}^{\infty}$ to A.

Counting sheep

For each set below, determine if it is countable or not. Prove your answers.

- (a) $S = \{a_1 a_2 a_3 \ldots \in \{0,1\}^{\infty} \mid \forall n \geq 1 \text{ the string } a_1 \ldots a_n \text{ contains more 1's than 0's.} \}.$
- (b) Σ^* , where Σ is an alphabet that is allowed to be countably infinite (e.g., $\Sigma = \mathbb{N}$).

Doesn't Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_1 , M_2 refer to TMs).

- (a) **REGULAR** = $\{\langle M \rangle : L(M) \text{ is regular}\}.$
- (b) **TOTAL** = $\{\langle M \rangle : M \text{ halts on all inputs} \}$.
- (c) **DOLORES** = $\{\langle M_1, M_2 \rangle : \exists w \in \Sigma^* \text{ such that both } M_1(w) \text{ and } M_2(w) \text{ accept} \}.$

^aThis one is important and very powerful

(Extra) Lose All Scripted Responses. Improvisation Only

Let $\mathbf{FINITE} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite} \}.$ Show that $\mathbf{TOTAL} \leq \mathbf{FINITE}.$