
Probability and Computation

K. Sutner

Carnegie Mellon University

1 Order Statistics

� Circuit Evaluation

� Yao’s Minimax Principle

� More Randomized Algorithms *

Rank and Order 3

Let U be some ordered universe such as the integers, rationals, strings,
and so forth.

It is easy to see that for any set A ⊆ U of size n there is a unique order
isomorphism

[n]←→ A

→: ord(k,A)

←: rk(a,A)

Note that ord(k,A) is trivial to compute if A is sorted.

Computation of rk(a,A) requires to determine the cardinality of
A≤a = { z ∈ A | z ≤ a } (which is easy if A is a sorted array and we have
a pointer to a).

Sometimes it is more convenient to use ranks 0 ≤ r < n.

Randomized Quicksort 4

Recall randomized quicksort. For simplicity assume elements in A are
unique.

Pick a pivot s ∈ A uniformly at random.

Partition into A<s, s, A>s.

Recursively sort A<s and A>s.

Here A is assumed to be given as an array. Partitioning takes linear time
(though is not so easy to implement in the presence of duplicates).

Running Time 5

Let X be the random variable: size of A<s. Then

pi = Pr[X = i] = 1/n

where i = 0, . . . , n− 1 , n = |A|.

Ignoring multiplicative constants we get

t(n) =

{
1 if n ≤ 1,∑
i<n pi(t(i) + t(n− i− 1)) + n otherwise.

Simplifying 6

t(n) = 1/n
∑
i<n

(
t(i) + t(n− i− 1)

)
+ n

= 2/n
∑
i<n

t(i) + n

n · t(n) = 2
∑
i<n

t(i) + n2

(n+ 1) · t(n+ 1) = 2
∑
i≤n

t(i) + (n+ 1)2

t(n+ 1) = (n+ 2)/(n+ 1) · t(n) + (2n+ 1)/(n+ 1)

which comes down to

t(n) =
n+ 1

n
· t(n− 1) + 2.

Solving 7

t(n) = n+ 1/n · t(n− 1) + 2 can be handled in to ways:

Unfold the equation a few levels and observe the pattern.

Solve the homogeneous equation h(n) = n+ 1/n · h(n− 1):
h(n) = n+ 1. Then construct t from h – see any basic text on
recurrence equations.

Either way, we find

t(n) = (n+ 1)/2 + 2(n+ 1)

n+1∑
i=3

1/i = Θ(n log n)

Random versus Deterministic Pivots 8

Random pivot:

Pr[X = k] = 1/n k = 0, . . . , n− 1

E[X] = (n− 1)/2

Var[X] = (n2 − 1)/12

Median of three:

Pr[X = k] =
6k(n− k − 1)

n(n− 1)(n− 2)
k = 1, . . . , n− 2

E[X] = (n− 1)/2

Var[X] = ((n− 1)2 − 4)/20

Selection versus Sorting 9

While selection seems somewhat easier than sorting, it is not clear that
one can avoid something like O(n log n) in the process of computing
ord(k,A).

The following result was surprising.

Theorem (Blum, Floyd, Pratt, Rivest, Tarjan, 1973)

Selection can be handled in linear time.

The algorithm is a perfectly deterministic divide-and-conquer approach.
Alas, the constants are bad.

Alternatively, we can use a randomized algorithm to find the kth element
quickly, on average.

Probabilistic Selection 10

Given a collection A of cardinality n, a rank 0 ≤ k < n. Here is a
recursive selection algorithm:

Permute A in random order, yielding a0, a1, . . . , an−1;
set B = nil.

Pick a pivot s ∈ A at random and compute A<s and A>s.
Let m = |A<s|.

If k = m return s.

If k < m return ord(k,A<s).

If k > m return ord(k −m− 1, A>s).

Running Time 11

Correctness is obvious, for the running time analysis divide [n] into bins
of exponentially decreasing size: bin k has the form

Bk = [n · (3/4)k, n · (3/4)k+1]

where we ignore the necessary ceilings and floors, as well as overlap.

Note that with probability 1/2 the cardinality of the selection set will
move (at least) to the next bin in each round. But then it takes 2 steps
on average to get (at least) to the next bin.

Hence the expected number of rounds is logarithmic and the total
running time therefore linear.

� Order Statistics

2 Circuit Evaluation

� Yao’s Minimax Principle

� More Randomized Algorithms *

Minimax Trees 13

Here is a highly simplified model of a game tree: we only consider
Boolean values 2 = {0, 1} and represent the two players by alternating
levels of “and” and “or” gates (corresponding to min and max).

More precisely, define Boolean functions Tk : 24k → 2 by

T1(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x3 ∨ x4)

Tk+1(x1,x2,x3,x4) = T1 (Tk(x1), Tk(x2), Tk(x3), Tk(x4))

T2 14

Lazy Evaluation 15

The Challenge: Given a truth assignment α : x→ 2 , we want to
evaluate the circuit Tk reading as few of the bits of α as possible (think
of α as a bitvector of length 4k).

We may safely assume that we always read the input bits from left to
right.

For example, x1 = x2 = 0 already forces output 0 and we do not need to
read x3 or x4 when evaluating T1.

Skipping a single bit in T1 may sound irrelevant, but skipping a whole
subtree in T3 is significant (16 variables).

Critical parameters:

R = output value

S = # variables read

Augmented Truth Table 16

x1 x2 x3 x4 R S
0 0 0 0 0 2
0 0 0 1 0 2
0 0 1 0 0 2
0 0 1 1 0 2
0 1 0 0 0 4
0 1 0 1 1 4
0 1 1 0 1 3
0 1 1 1 1 3
1 0 0 0 0 3
1 0 0 1 1 3
1 0 1 0 1 2
1 0 1 1 1 2
1 1 0 0 0 3
1 1 0 1 1 3
1 1 1 0 1 2
1 1 1 1 1 2

Essential Part 17

x1 x2 x3 x4 R S
0 0 . . 0 2
0 0 . . 0 2
0 0 . . 0 2
0 0 . . 0 2
0 1 0 0 0 4
0 1 0 1 1 4
0 1 1 . 1 3
0 1 1 . 1 3
1 . 0 0 0 3
1 . 0 1 1 3
1 . 1 . 1 2
1 . 1 . 1 2
1 . 0 0 0 3
1 . 0 1 1 3
1 . 1 . 1 2
1 . 1 . 1 2

And Probability? 18

Think of choosing a truth assignment for x1, x2, x3, x4 at random. R
and S are now discrete random variables.

Here is the PMF in the uniform case:

R\S 1 2 3 4
0 0 1/4 1/8 1/16

1 0 1/4 1/4 1/16

E[R] = 9/16 ≈ 0.56

E[S] = 21/8 ≈ 2.63

A Bound 19

Lemma

E[Sk] = 3k = nlog4 3 ≈ n0.79

Proof.

Homework.

2

Biased Input 20

How about input with bias Pr[x = 1] = p for some 0 ≤ p ≤ 1?

This is the bias for the original inputs at the input level of the circuit.

Note that this question is really inevitable: we have to worry about the
influence of T1 gates, even if the original bias is just 1/2.

Table for Biased Input 21

x1 x2 x3 x4 R S Pr
0 0 0 0 0 2 q4

0 0 0 1 0 2 pq3

0 0 1 0 0 2 pq3

0 0 1 1 0 2 p2q2

0 1 0 0 0 4 pq3

0 1 0 1 1 4 p2q2

0 1 1 0 1 3 p2q2

0 1 1 1 1 3 p3q
1 0 0 0 0 3 pq3

1 0 0 1 1 3 p2q2

1 0 1 0 1 2 p2q2

1 0 1 1 1 2 p3q
1 1 0 0 0 3 p2q2

1 1 0 1 1 3 p3q
1 1 1 0 1 2 p3q
1 1 1 1 1 2 p4

Biased Input 22

It follows that for input with bias Pr[x = 1] = p we have

E[R1] = Pr[R1 = 1] = p2(4− 4p+ p2)

Sanity check: p2(4− 4p+ p2) [p 7→ 1/2] = 9/16.

Claim

T1 increases the bias for p ≥ (3−
√

5)/2 ≈ 0.38.

This is vaguely plausible since both “and” and “or” are monotonic. See
the next plot.

p2(4− 4p+ p2) 23

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

� Order Statistics

� Circuit Evaluation

3 Yao’s Minimax Principle

� More Randomized Algorithms *

So What? 25

So the canonical lazy algorithm has E[Sk] = 3k ≈ n0.79.

This may sound good, but it would be nice to have a lower bound that
indicates how good this result actually is.

It would be even nicer to have some general method for doing this.

Yao’s Minimax Principle 26

One can use understanding of the performance of deterministic algorithms
to obtain lower bounds on the performance of probabilistic algorithms.
To make this work, focus on Las Vegas algorithms: the answer is always
correct, but the running time may be bad, with small probability.

Given some input I, a Las Vegas algorithm A makes a sequence of
random choices during execution. We can think of these choices as
represented by a choice sequence C ∈ 2?.

Given I and C, the algorithm behaves in an entirely deterministic
fashion: A(I;C).

Inputs and Algorithms 27

Fix some input size n once and for all (unless you love useless subscripts).

I = collection of all inputs of size n

A = collection of all deterministic algorithms for I

It is clear that I is finite, but it requires a fairly delicate definition of
“algorithm” to make sure that A is also finite.

Exercise

Figure out how to make sure A is finite.

LV as a Distribution 28

We can think of a Las Vegas algorithm A as a probability distribution on
A: with some probability the algorithm executes one of the deterministic
algorithms in A.

This works both ways: given a probability distribution on A we can think
of it as a Las Vegas algorithm (though this is not the way algorithm
design works typically).

In the following, we are dealing with two probability distributions:

σ for the algorithm,

τ for the inputs.

We’ll indicate selections according to these distributions by subscripts.

Yao’s Theorem 29

Theorem (Yao 1977)

min
A∈A

E[TA(Iτ)] ≤ max
I∈I

E[TAσ (I)]

Thus, the average case (wrt τ) running time of the best deterministic
algorithm is a lower bound for the expected (wrt σ) running time of the
corresponding Las Vegas algorithm on the worst input.

The proof is by computation: show that
∑

(A,I) Pr[A]Pr[I]TA(I)
separates the two values. Note that we are not assuming independence!

Application: Minimax Circuits 30

There is a natural Las Vegas algorithm to evaluate Tk: at every node in
the tree, pick a subtree at random, evaluate it and then determine
whether the other tree also needs to be evaluated.

From what we have seen, this algorithm will evaluate O(n0.79) variables

on average on any input I ∈ 24k .

According to Yao’s Minimax Principle we have to construct a random
instance and determine the expected number input variabls read by any
deterministic evaluation algorithm.

Dead in the Water 31

So we need to understand A, the class of all deterministic algorithms, for
evaluating Tk .

How on earth are we ever going to understand this class of algorithms?
We know some of them, but who knows what kind of cockamamie
methods there are?

Exercise

The performance of any deterministic algorithm can be matched or
beaten by a top-down lazy algorithm.

This is not obvious, think about the necessary argument. At any rate, we
only need to consider these algorithms to get the lower bound for Yao.

More Dirty Tricks: Nor 32

A simple computation shows that

T1(x1, x2, x3, x4) = (x1 ∨ x2) ∨ (x3 ∨ x4)

So, we can think of Tk as a homogeneous nor-tree of depth 2k.

If we provide input to a nor gate with bias p, then the output has bias
(1− p)2.

The equation (1− p)2 = p has solution p0 = (3−
√

5)/2 ≈ 0.38 and is
visible as a fixed point in the graph in a previous slide.

Cost in Deterministic Algorithm 33

Let Sd be the cost of evaluating a node at depth d in the nor tree with
bias p0 by some top-down lazy method.

E[Sd] = p0 · E[Sd−1] + (1− p0) · 2 · E[Sd−1]

= (2− p0) E[Sd−1]

= (1 +
√

5)/2 E[Sd−1]

It follows that E[S2k] ≈ n0.69, so no Las Vegas algorithm can do better
than that in the worst case (i.e., on the worst possible input).

� Order Statistics

� Circuit Evaluation

� Yao’s Minimax Principle

4 More Randomized Algorithms *

Randomized Incremental Algorithms 35

Occasionally the construction of a data structure can be simplified
significantly if on assumes the input is sufficiently random: one can then
build the data structure in a very brute-force, step-by-step manner that
requires no complicated ideas and is fast on average.

For example, suppose we wish to construct a sorted list B from a given
list A.

Permute A in random order, yielding a1, a2, . . . , an; set B = nil.

for k = 1, . . . , n: insert ak into B, in the proper place.

Quoi? 36

This looks like insertion sort, so why bother?

Because it isn’t: we are going to maintain an additional data structure, a
table that determines for each x ∈ A−B which interval I defined by B
element x belongs to. Moreover, for each interval I the table provides a
list of all the elements in the interval.

Given the table, the insert step plus maintenance of the table can be
handled in O(|I|) steps.

So we need to find the expected value of the sum of the lengths of the
intervals that we insert into.

A Trick: Going Backwards 37

Here is a trick that sometimes makes the argument a bit easier: run the
algorithm backwards.

Here, going backwards in stage k means this: we randomly pick one of
the k elements in B and remove it. Since the points in B are random, we
should expect intervals of size n/k.

But then the total number of steps will about nHn = Θ(n log n), the
best a comparison based sorting algorithm can do.

Alas, in practice, maintaining the table is cumbersome, so in the Real
World this method is not competitive.

Convex Hulls 38

A set A ⊆ R2 is convex iff for all x, y ∈ A, the line segment [x, y] is
contained in A.

Note that [x, y] = {λx+ (1− λ)y | 0 ≤ λ ≤ 1 }.
Given an arbitrary set A, the convex hull of A is defined to be the least
convex set containing A:

ch(A) =
⋂
{C | A ⊆ C,C convex }.

This is a hull operation:

A ⊆ ch(A).

ch(ch(A)) = ch(A).

Better Description 39

Note that the definition as stated is impredicative and hence not too
useful (ch(A) is one of the sets on the right hand side). Here is a better
one:

ch(A) = {
∑

λiai |
∑

λi = 1, 0 ≤ λi, ai ∈ A }

The
∑
λiai are called convex combinations.

In particular when A is finite, say A = {a1, . . . , an}, we can obtain the
hull as

ch(A) = {
∑

λiai |
∑

λi = 1, 0 ≤ λi }

Extremal Points 40

Some of the ai can be expressed as convex combinations of others, so
the problem comes down to identifying B ⊆ A such that ch(B) = ch(A)
but no proper subset works.

Hence a reasonable output format for the convex hull is to return a list

b1, b2, . . . , bm

of extremal points, obtained by traversing them in clockwise order,
starting at the “top-left” point.

Lower Bound 41

As a consequence of our output convention, we get a lower bound: we
can use the convex hull to sort. To see why, suppose we have integral or
rational numbers x1, . . . , xn.

Define points ai = (xi, x
2
i) on the parabola y = x2.

Since the parabola is convex one can read the sorted list off the convex
hull of A.

We will now match this bound with a randomized incremental algorithm
to construct the hull.

For simplicity assume that A contains no collinear points.

Randomized Incremental Algorithm 42

Permute A in random order, yielding a1, a2, . . . , an;

Let B = (a1, a2, a3), let c be the centroid of this triangle.

for k = 4, . . . , n: insert ak into B:

• if ak ∈ ch(Bk−1) do nothing
• otherwise modify Bk−1 to include ak.

As before, we will need to maintain additional information: for each point
a ∈ A−B the edge of the convex hull of B that intersects the line
segment [c, a].

In the opposite direction, we need for each edge a list of all the
corresponding points.

Analysis 43

Updating B may require the removal of O(n) points from B, but the
total number of removals is bounded by 2n: we insert at most 2n points
and we can charge for removal at the moment of insertion.

So the critical part is the update operation on the edge-points table: we
need to process all the points currently associated with the edge that is
being removed from the boundary of Bk−1.

Using the backward trick, the argument is precisely the same as for the
sorting algorithm from above.

More Randomized Selection 44

Here is a randomized algorithm for selection that uses a few magic
numbers. The numbers make sense only when one performs a
probabilistic analysis of the algorithm.

Convention: We will systematically ignore ceilings and floors and
pretend that various numbers such as

√
n are integral.

We are given a set A ⊆ U of n elements and we would like to determine
t = ord(k,A).

To this end, the algorithm selects a “small” subset B of A and works
with B. Actually, we sample A with replacement.

Batten down the hatches.

Crazy Selection (Las Vegas) 45

1 Sample A with replacement n3/4 times to produce B.

2 Sort B.

3 Let κ = k/n1/4, κ− = max(κ−
√
n, 1), κ+ = min(κ+

√
n, n3/4),

b± = ord(κ±, B).

4 Compute r± = rk(b±, A) – note the A.

5 Let

A0 =

{x ∈ A | x ≤ b+ } if k < n1/4,

{x ∈ A | x ≥ b− } if k > n− n1/4,

{x ∈ A | b− ≤ x ≤ b+ } otherwise.

6 if t /∈ A0 or |A0| > 4n3/4 return to step 1.

7 Sort A0 and return ord(k − r− + 1, A0).

Comments 46

Think of n = 108 so that n3/8 = 106 and κ = k/100.

It is easier to pretend that B is a subset of A cardinality n3/4. Alas,
picking a subset of this size would make the algorithm more clumsy
to implement and harder to analyze.

In an ideal scenario, the elements in B would be equidistant; in that
case we only would need to consider the interval spanned by the
immediate neighbors of ord(κ,B) in B. By going out to

√
n we

hope to compensate for the fact that B is not regularly placed.

Let’s count comparisons. The only part that is expensive is step (4),
the total damage is 2n+ o(n).

The test in (6) is not impossible: we use the order isomorphism and
check r− ≤ k ≤ r+ instead.

Analysis 47

Lemma

The Crazy Selection algorithm terminates after one round with
probability 1−O(n−1/4).

Proof. Unfortunately, there are several cases to consider. For simplicity,
we deal only with

A0 = {x ∈ A | b− ≤ x ≤ b+ }

and show that t /∈ A0 is unlikely. t /∈ A0 means t < b− or t > b+. In the
first case we must have

#(x ∈ B
∣∣ x ≤ t) < κ−

and in the other case

#(x ∈ B
∣∣ x ≤ t) > κ+.

Analysis, contd. 48

This suggests to consider to random variable

X = #(x ∈ B
∣∣ x ≤ t)

which can be written as an indicator variable sum X =
∑n3/4

i=1 Xi where
Xi = 1 iff the ith element in B is ≤ t.
Note that we sample A with replacement and “ith element” means in the
order of selection; X is really the number of samples below t (but for
intuition think of it as cardinality).

It follows that Pr[Xi = 1] = k/n.

Analysis, contd. 49

Clearly the Xi are Bernoulli, so we can calculate stats for X as follows:

E[X] = k/n · n3/4 = kn−1/4 = κ

Var[X] = n3/4 · k/n · (1− k/n) ≤ 1/4 · n−1/4

σ ≤ 1/2n3/8

The bound on Var[X] follows from considering the parabola x(1− x).

By Chebyshev,

Pr[|X − κ| ≥
√
n] ≤ Pr[|X − κ| ≥ 2n1/8σ] = O(n−1/4)

Analysis, contd. 50

It follows that Pr[t < b−] = O(n−1/4).

Essentially the same argument shows that Pr[b+ < t] = O(n−1/4).

But the probability of the union of the two failure modes is bounded by
the sum of the respective probabilities, which is still O(n−1/4).

2

Note that the bound O(n−1/4) is not overwhelming; we have not even
made an attempt to estimate the constants.

We certainly would not want to use a recursive version of the algorithm.

	Order Statistics
	Circuit Evaluation
	Yao's Minimax Principle
	More Randomized Algorithms *

