| 5-252
 More Great Ideas in Theoretical Computer Science

Lecture 7:

Communication Complexity

March 23rd, 2018

What are the limitations to what computers can learn?

Do certain mathematical theorems have short proofs?

Can quantum mechanics be exploited to speed up computation?

Is every problem whose solution is efficiently verifiable also efficiently solvable? i.e. $\mathrm{P}=\mathrm{NP}$?

What are the limitations to what computers can learn?

Do certain mathematical theorems have short proofs?

Can quantum mechanics be exploited to speed up computation?

Is every problem whose solution is efficiently verifiable also efficiently solvable? i.e. $\mathrm{P}=\mathrm{NP}$?

Communication complexity

Cool Things About Communication Complexity

Many useful applications:
machine learning, proof complexity, quantum computation, pseudorandom generators, data structures, game theory,...

The setting is simple and neat.

Beautiful mathematics combinatorics, algebra, analysis, information theory, ...

Motivating Example I: Checking Equality

OlOOIOIOIIIOIOI
$\longleftarrow n$ bits \longrightarrow

彗
$\stackrel{?}{=}$
010010100110101
$\longleftarrow-n$ bits \longrightarrow

How many bits need to be communicated?
Naively: n
Actually: n
What if we allow 0.00000000001% probability of error?
Naively: $\Omega(n) \quad$ Actually: $O(\log n)$

Motivating Example 2: Auctions

Alice

$\$ 100$

Defining the model a bit more formally

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.
(We assume players have unlimited computational power individually.)

Poll I

$x, y \in\{0,1\}^{n}, \quad \operatorname{PAR}(x, y)=$ parity of the sum of all the bits. (i.e. it's I if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.
$O(1)$
$O(\log n)$
$O\left(\log ^{2} n\right)$
$O(\sqrt{n})$
$O(n / \log n)$
$O(n)$

Poll I Answer

$x, y \in\{0,1\}^{n}, \quad \operatorname{PAR}(x, y)=$ parity of the sum of all the bits. (i.e. it's I if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

Once Bob knows the parity of x, he can compute

$$
P A R(x, y)
$$

- Alice sends $P A R(x)$ to Bob. I bit
- Bob computes $P A R(x, y)$ and sends it to Alice. I bit

2 bits in total

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.

A protocol P is the "strategy" players use to communicate.
It determines what bits the players send in each round.
$P(x, y)$ denotes the output of P.

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.

A (deterministic) protocol P computes F if
$\forall(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}$,

Analogous to:

$$
P(x, y)=F(x, y)
$$

$$
\forall x \in \Sigma^{*} \quad A(x)=F(x)
$$

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.

A randomized protocol P computes F with ϵ error if

$$
\forall(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}
$$

$$
\operatorname{Pr}[P(x, y) \neq F(x, y)] \leq \epsilon
$$

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.
$\operatorname{cost}(P)=\max _{(x, y)} \#$ bits P communicates for (x, y) if P is randomized, you take max over the random choices it makes.

Deterministic communication complexity
$\mathbf{D}(F)=\min$ cost of a (deterministic) protocol computing F.
Randomized communication complexity
$\mathbf{R}^{\epsilon}(F)=$ min cost of a randomized protocol computing F with ϵ error.

2 Player Model of Communication Complexity

Goal: Compute $F(x, y)$. (both players should know the value)
How: Sending bits back and forth according to a protocol.
Resource: Number of communicated bits.
$\operatorname{cost}(P)=\max _{(\# \text { bits } P \text { communicates for }(x, y) ~}^{x}$
We usually fix ϵ to some constant.

$$
\text { e.g. } \epsilon=1 / 3
$$

$\mathbf{D}(F)=\mathbf{m i}$
We can always boost the success
Randonized co probability if we want.

$$
\mathbf{R}^{\Theta}(F)=\min
$$

What is considered hard or easy?

$$
F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}
$$

$$
\begin{gathered}
0 \leq \quad \mathbf{R}_{2}^{\epsilon}(F) \leq \mathbf{D}_{2}(F) \quad \leq n+1 \\
\\
c \quad \log ^{c}(n) \quad n^{\delta} \quad \delta n
\end{gathered}
$$

Example

Equality: $\quad E Q(x, y)= \begin{cases}1 & \text { if } x=y, \\ 0 & \text { otherwise } .\end{cases}$
$\mathbf{D}(E Q)=n+1$.
$\mathbf{R}^{1 / 3}(E Q)=O(\log n)$.

Poll 2

$M A J(x, y)=1$ iff majority of all the bits in x and y are set to I.

What is $\mathbf{D}(M A J) ?$ Choose the tightest bound.
$O(1)$
$O(\log n)$
$O\left(\log ^{2} n\right)$
$O(\sqrt{n})$
$O(n / \log n)$
$O(n)$

Poll 2 Answer

$\operatorname{MAJ}(x, y)=\mathrm{I}$ iff majority of all the bits in x and y are set to I.

What is $\mathbf{D}(M A J)$? Choose the tightest bound.
The result can be computed from

- Alice sends $\sum_{i} x_{i}$ to Bob. $\sim \log \mathrm{n}$ bits
- Bob computes $\operatorname{MAJ}(x, y)$ and sends it to Alice. I bit $O(\log n)$ in total

Another example: Disjointness function

Can view the input string as a subset of $\{1,2,3, \ldots, \mathrm{n}\}$

$$
x=
$$

Disjointness: $\operatorname{DISJ}\left(S_{x}, S_{y}\right)= \begin{cases}1 & S_{x} \cap S_{y}=\emptyset \\ 0 & \text { otherwise }\end{cases}$
$\mathbf{R}^{1 / 3}(D I S J)=\Omega(n) . \quad$ hard!

The plan

I. Efficient randomized communication protocol for checking equality.
2. An application of communication complexity.
3. A few words on proving lower bounds.

Efficient randomized communication protocol for checking equality

The Power of Randomization

$$
\mathbf{R}^{1 / 3}(E Q)=O(\log n)
$$

The Protocol:

Alice's Input: $a_{0} a_{1} a_{2} \ldots a_{n-1} \in\{0,1\}^{n}$ Bob's Input: $\quad b_{0} b_{1} b_{2} \ldots b_{n-1} \in\{0,1\}^{n}$

Alice picks a prime $p \in\left[n^{2}, 2 n^{2}\right]$ and a random $t \in \mathbb{Z}_{p}$.
Alice builds polynomial

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \in \mathbb{Z}_{p}[x]
$$

Alice sends Bob: $p, t, A(t) \rightarrow O(\log n)$ bits

The Power of Randomization

$$
\mathbf{R}^{1 / 3}(E Q)=O(\log n)
$$

The Protocol:

Alice picks a prime $p \in\left[n^{2}, 2 n^{2}\right]$ and a random $t \in \mathbb{Z}_{p}$.
Alice builds polynomial

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \in \mathbb{Z}_{p}[x]
$$

Alice sends Bob: $p, t, A(t) \rightarrow O(\log n)$ bits

Bob builds polynomial $B(x) \in \mathbb{Z}_{p}[x]$
Output: If $A(t)=B(t)$, output 1. Otherwise, output 0 .

The Power of Randomization

$$
\mathbf{R}^{1 / 3}(E Q)=O(\log n)
$$

Analysis:

Want to show: For all inputs (a, b), probability of error is $\leq \epsilon$.
For all (a, b) with $a=b$:

$$
\operatorname{Pr}_{t}[\text { error }]=\operatorname{Pr}_{t}[A(t) \neq B(t)]=0
$$

For all (a, b) with $a \neq b$:

$$
\begin{aligned}
& \underset{t}{\operatorname{Pr}}[\text { error }]=\underset{t}{\operatorname{Pr}}[A(t)=B(t)]=\underset{t}{\operatorname{Pr}[(A-B)(t)=0]} \\
& =\underset{t}{\operatorname{Pr}[t \text { is a root of } A-B] \leq \frac{n-1}{p} \leq \frac{n-1}{n^{2}} \leq \frac{1}{n}} \begin{array}{r}
\text { degree }(A-B) \leq n-1
\end{array}
\end{aligned}
$$

An application of communication complexity

Applications of Communication Complexity

- circuit complexity
- time/space tradeoffs for

Turing Machines

- VLSI chips
- machine learning
- game theory
- data structures
- proof complexity
- pseudorandom generators
- pseudorandomness
- branching programs
- data streaming algorithms
- quantum computation
- lower bounds for polytopes
representing NP-complete problems

Applications of Communication Complexity

- circuit complexity
- time/space tradeoffs for

Turing Machines

- VLSI chips
- machine learning
- game theory
- data structures
- proof complexity
- pseudorandom generators
- pseudorandomness
- branching programs
- data streaming algorithms
- quantum computation
- lower bounds for polytopes
representing NP-complete problems

How Communication Complexity Comes In
Setting: Solve some task while minimizing some resource.
e.g. find a fast algorithm, design a small circuit, find a short proof of a theorem, ...

Goal: Prove lower bounds on the resource needed.

Sometimes we can show:

efficient solution to our problem
efficient communication protocol for a certain function.
i.e. no efficient protocol for the function no efficient solution to our problem.

Lower bounds for data streaming algorithms

Data Streaming Algorithms

Data Streaming Algorithms

Data Streaming Algorithms

Data Streaming Algorithms

Fix some function $f:[n]^{n} \rightarrow \mathbb{Z}$.
e.g. $f(S)=\#$ most frequent symbol in S

Goal: On input S, compute (or approximate) $f(S)$ while minimizing space usage.

Lower Bounds via Communication Complexity

$$
f(S)=\# \text { most frequent symbol in } S
$$

Space efficient streaming algorithm computing f communication efficient protocol computing $D I S J$.

Disjointness: $\operatorname{DISJ}\left(S_{x}, S_{y}\right)= \begin{cases}1 & S_{x} \cap S_{y}=\emptyset \\ 0 & \text { otherwise }\end{cases}$

Lower Bounds via Communication Complexity

$$
f(S)=\# \text { most frequent symbol in } S
$$

Space efficient streaming algorithm computing f communication efficient protocol computing $D I S J$.

$$
S_{y}=\{1,5,7,8\}
$$

$$
\left.y=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & 1 & 0 & 1
\end{array} \right\rvert\,
$$

Protocol: Alice runs streaming algorithm on S_{x}.
She sends the state and memory contents to Bob.
Bob continues to run the algorithm on S_{y}. If $f\left(S_{x} \cdot S_{y}\right)=2$, Bob outputs 0 , otherwise I.
Correctness
Cost

$$
\begin{aligned}
& S_{x}=\{2,4,5\} \\
& x=\begin{array}{l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\end{aligned}
$$

A few words on showing lower bounds

The function matrix

$$
F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}
$$

y

$M_{F}=$ | 011010111010111111001010010101000 |
| :--- |
| 01010101011010100101010010111100 |
| 010100001010111010101010111101011 |
| 00010110101111010101100101010101 |
| 001010101010101010110100010101011 |
| 01011101011101001011010101110100 |
| 010101110101010101000101000101101 |
| 010101010111010101101101101110101 |
| 11010101010101010101010111100 |
| 111011101010101010101010101001111 |
| 11010101010101000101010101000101 |
| 01111000011111000000001110101111 |
| 0110101101011111001010010101000 |
| 01010101010101010101010111110000 |
| 101010101000001110101011101011000 |

2^{n} by 2^{n}

$$
M_{F}[x, y]=F(x, y)
$$

The function matrix

Equality: $\quad E Q(x, y)= \begin{cases}1 & \text { if } x=y, \\ 0 & \text { otherwise. }\end{cases}$

$\mathrm{n}=3$		y								
		000	001	010	011	100	101	110	111	
$M_{E Q}=$	000	1	0	0	0	0	0	0	0	
	001	0	1	0	0	0	0	0	0	
	010	0	0	1	0	0	0	0	0	
	011	0	0	0	1	0	0	0	0	
	${ }^{1} 100$	0	0	0	0	1	0	0	0	
	101	0	0	0	0	0	1	0	0	
	110	0	0	0	0	0	0	1	0	2^{n} by 2^{n}
	111	0	0	0	0	0	0	0	1	matrix

The function matrix

How do you prove lower bounds on comm. complexity?

You study this matrix!

Take-Home Message

Communication complexity studies natural distributed tasks.

Communication complexity (lower bounds) has many interesting applications.

Lower bounds can be proved using a variety of tools: combinatorial, algebraic, analytic, information theoretic,...

