
CDM

Program Size Complexity

Klaus Sutner

Carnegie Mellon University

kolmogorov 2018/2/8 22:58

1 Wolfram Prize

� Program-Size Complexity

� Prefix Complexity

� Incompleteness

Small Universal 3

A Prize Question 4

In May 2007, Stephen Wolfram posed the following challenge question:

Is the following (2,3)-Turing machine universal?

0 1 2
p (p,1,L) (p,0,L) (q,1,R)
q (p,2,R) (q,0,R) (p,0,L)

Prize money: $25,000.

A Run 5

Another 6

Head Movement 7

0 50 100 150 200 250

-5

0

5

10

Compressed Computation 8

Compressed Computation with Different Initial Condition 9

The Big Difference 10

We saw how to construct a universal universal Turing machine.

But the prize machine is not “designed” to do any particular computation,
much less to be universal.

The problem here is to show that this tiny little machine can simulate
arbitrary computations – given the right initial configuration (presumably a
rather complicated initial configuration).

Alas, that’s not so easy.

The Big Controversy 11

In the Fall of 2007, Alex Smith, an undergraduate at Birmingham at the
time, submitted a “proof” that the machine is indeed universal.

The proof is painfully informal, fails to define crucial notions and drifts
into chaos in several places.

A particularly annoying feature is that it uses infinite configurations: the
tape inscription is not just a finite word surrounded by blanks.

At this point, it is not clear what exactly Smith’s argument shows.

� Wolfram Prize

2 Program-Size Complexity

� Prefix Complexity

� Incompleteness

64 Bits 13

01

0101101110111101111101111110111111101111111101111111110111111111

1011010100000100111100110011001111111001110111100110010010000100

0011100101100001011001010100001110011010111111001010000110010011

Which is the least/most complicated?

1000 Bits 14

A good way to think about this, is to try to compute the first 1000 bits of the
“corresponding” infinite bit sequence.

(01)ω

concatenate 01i, i ≥ 1

binary expansion of
√

2

random bits generated by a measuring decay of a radioactive source
FourmiLab.

So the last one is a huge can of worms; it looks like we need physics to do this,
pure math and logic are not enough.

http://www.fourmilab.ch/hotbits

Program-Size Complexity 15

Examples like these strings and the π program naturally lead to the question:

What is the shortest program that generates some given output?

To obtain a clear quantitative answer, we need to fix a programming language
and everything else that pertains to compilation and execution.

Then we can speak of the shortest program (in length-lex order) that generates
some fixed output.

Note: This is very different from resource based complexity measures (running
time or memory requirement). We are not concerned with the time it takes to
execute the program, nor with the memory it might consume during execution.

Short Programs 16

In the actual theory, one uses universal Turing machines to formalize the notion
of a program and its execution, but intuitively it is a good idea to think of

C programs,

being compiled on a standard compiler,

and executed in some standard environment.

So we are interested in the short C program that will produce same particular
target output. As the π example shows, these programs might be rather weird.

Needless to say, this is just intuition. If we want to prove theorems, we need a
real definition.

Background 17

Consider a universal Turing machine U .

For the sake of completeness, suppose U uses tape alphabet 2 = {0, 1, b}
where we think of b as the blank symbol (so each tape inscription has only
finitely many binary digits).

The machine has a single tape for input/work/output.

The machine operates like this: we write a binary string p ∈ 2? on the tape,
and place the head at the first bit of p. U runs and, if it halts, leaves behind a
single binary string x on the tape.

We write U(p) ' x.

The Picture 18

Up x

Kolmogorov-Chaitin Complexity 19

Definition

For any word x ∈ 2∗, denote x̂ the length-lex minimal program that produces x
on U : U(x̂) ' x.

The Kolmogorov-Chaitin complexity of x is defined to be the length of the
shortest program which generates x:

C(x) = |x̂| = min
(
|p| | U(p) ' x

)

This concept was discovered independently by Solomonov 1960, Kolmogorov
1963 and Chaitin 1965.

Example

Let x be the first 35,014 binary digits of π. Then x has Kolmogorov-Chaitin
complexity at most a 980 in the standard C model.

The Basics 20

Note that we can always hard-wire a table into the program. It follows that x̂
and therefore C(x) exists for all x. Informally, the program looks like

print “x1x2 . . . xn”

Moreover, we have a simple bound:

C(x) ≤ |x|+ c

But note that running an arbitrary program p on U may produce no output:
the (simulation of the) program may simply fail to halt.

Hold It . . . 21

The claim that C(x) ≤ |x|+ c is obvious in the C model.

But remember, we really need to deal with a universal Turing machine.

The program string there could have the form

p = ux ∈ 2?

where u is the instruction part (“print the following bits”), and x is the desired
output.

So the machine actually only needs to erase u in this case. This produces a
very interesting problem: how does U know where u ends and x starts?

Self-Delimiting Programs 22

We could use a simple coding scheme to distinguish between the program part
and the data part of p:

p = 0u10u2 . . . 0ur 1x1x2 . . . xn

Obviously, U could now parse p just fine. This seems to inflate the complexity
of the program part by a factor of 2, but that’s OK; more on coding issues
later.

There are other possibilities like p = 0|u|1ux.

Cheating 23

Also note: we can cheat and hardwire any specific string x of very high
complexity in U into a modified environment U ′.

Let’s say

U ′ on input 0 outputs x.

U ′ on input 1p runs program U(p).

U ′ on input 0p returns no output.

Then U ′ is a perfectly good universal machine that produces good complexity
measures, except for x, which gets the fraudulently low complexity of 1.
Similarly we could cheat on a finite collection of strings x1, . . . , xn.

Invariance 24

Fortunately, beyond this minor cheating, the choice of U doesn’t matter much.
If we pick another machine U ′ and define C′ accordingly, we have

C′(x) ≤ C(x) + c

since U can simulate U ′ using some program of constant size. The constant c
depends only on U and U ′.

This is actually the critical constraint in an axiomatic approach to KC
complexity: we are looking for machines that cannot be beaten by any other
machine, except for a constant factor. Without this robustness our definitions
would be essentially useless.

It is even true that the additive offset c is typically not very large; something
like a few thousand.

Avoiding Cheaters 25

What we would really like is a natural universal machine U that just runs the
given programs, without any secret tables and other slimy tricks. Think about
a real C compiler.

Alas, this notion of “natural” is quite hard to formalize.

One way to avoid cheating, is to insist that U be tiny: take the smallest
universal machine known (for the given tape alphabet). This will drive up
execution time, and the programs will likely be rather cryptic, but that is not
really our concern.

Concrete U 26

Greg Chaitin has actually implemented such
environments U .

He uses LISP rather than C, but that’s just a
technical detail (actually, he has written his
LISP interpreters in C).

So in some simple cases one can actually
determine precisely how many bits are needed
for x̂.

Numbers 27

Proposition

For any positive integer x: C(x) ≤ log x+ c.

This is just plain binary expansion: we can write x in

n = blog2 xc+ 1

bits using standard binary notation.

But note that for some x the complexity C(x) may be much smaller than log x.

For example x = 22k or x = 222
k

requires far fewer than log x bits.

Exercise

Construct some other numbers with small Kolmogorov-Chaitin complexity.

Copy 28

How about duplicating a string? What is C(xx)?

In the C world, it is clear that we can construct a constant size program that
will take as input a program for x and produce xx instead. Hence we suspect

C(xx) ≤ C(x) + O(1).

Again, in the Turing machine model this takes a bit of work: we have to
separate the program from the data part, and copying requires some kind of
marking mechanism (not trivial, since our tape alphabet is fixed).

String Operations 29

A very similar argument shows that

C(xop) ≤ C(x) + O(1).

How about concatenation?

C(xy) ≤ C(x) + C(y) + O(log min(C(x), C(y)))

Make sure to check this out in the Turing machine model. Note in particular
that it is necessary to sandbox the programs for x and y.

Computable String Operations 30

Here is a more surprising fact: we can apply any computable function to x, and
increase its complexity by only a constant.

Lemma

Let f : 2? → 2? be computable.

Then C(f(x)) ≤ C(x) + O(1).

Proof.

f is computable, hence has a finite description in terms of a Turing machine
program q. Combine q with the program x̂.

2

Say What? 31

The last lemma is a bit hard to swallow, but it’s quite correct.

Take your favorite exceedingly-fast-growing recursive function, say, the
Ackermann function A(x, x).

E.g., A(100, 100) is a mind-boggling atrocity; much, much larger than anything
we can begin to make sense of.

And yet

C(A(100, 100)) ≤ log 100 + a little = a little

Some Exercises 32

Exercise

Prove the complexity bound of a concatenation xy from above.

Exercise

Is it possible to cheat in infinitely many cases? Justify your answer.

Exercise

Use Kolmogorov-Chaitin complexity to show that the language
L = {xxop | x ∈ 2? } of even length palindromes cannot be accepted by an
finite state machine.

Conditional Complexity 33

Suppose we have a string x = 0n.

In some sense, x is trivial, but C(x) may still be high, simply because C(n) is
high.

Definition

Let x, y ∈ 2?. The conditional Kolmogorov complexity of x given y is the
length of the shortest program p such that U with input p and y computes x.

Notation: C(x | y).

Then C(0n |n) = O(1), no matter what n is.

And C(x | x̂) = O(1).

The Chain Rule 34

Lemma

C(xy) ≤ C(x) + C(y |x) + O(log min(C(x), C(y)))

Proof.

Once we have x, we can try to exploit it in the computation of y.

The log factor in the end comes from the need to separate the shortest
programs for x and y.

2

Compression 35

C(x)/|x| is the ultimate compression ratio: there is no way we can express x as
anything shorter than C(x) (at least in general; recall the comment about
cheating).

An algorithm that takes as input x and returns as output x̂ is the dream of
anyone trying to improve gzip or bzip2.

Well, almost. In a real compression algorithm, the time to compute x̂ and to
get back from there to x is also very important. In our setting time complexity
is being ignored completely.

As we will see, there is also the slight problem that C(x) is not computable,
much less x̂.

Incompressibility 36

As is the case with compression algorithms, even C cannot always succeed in
producing a shorter string.

Definition

A string x ∈ 2? is c-incompressible if C(x) ≥ |x| − c where c ≥ 0.

Hence if x is c-incompressible we can only shave off at most c bits when trying
to write x in a more compact form: an incompressible string is generic, it has
no special properties that one could exploit for compression.

The upside is that we can adopt incompressibility as a definition of randomness
for a finite string – though it takes a bit of work to verify that this definition
really conforms with our intuition. For example, such a string cannot be too
biased.

Existence 37

Having incompressible strings can be very useful in lower bound arguments:
there is no way an algorithm could come up with a clever, small data structure
that represents these strings.

How do we know that incompressible strings exist? By high school counting:
there aren’t enough short programs to generate all long strings. Here is a
striking result whose proof is also a simple counting argument.

Lemma

Let S ⊆ 2? be set of words of cardinality n ≥ 1. For all c ≥ 0 there are at least
n(1− 2−c) + 1 many words x in S such that

C(x) ≥ logn− c.

Examples 38

Example

Consider S = 2k so that n = 2k. Then, by the lemma, most words of length k
have complexity at least k − c, so they are c-incompressible.

In particular, there is at least one string of length k with complexity at least k.

Example

Pick size s and let S = { 0i | 0 ≤ i < s }. Specifying x ∈ S comes down to
specifying the length |x|. Writing a program to output the length will often
require close to log s bits.

But is it True? 39

This lemma sounds utterly wrong: why not simply put only simple words (of
low Kolmogorov-Chaitin complexity) into S? There is no restriction on the
elements of S, just its size.

Since we are dealing with strings, there is a natural, easily computable order:
length-lex. Hence there is an enumeration of S:

S = w1, w2, . . . , wn−1, wn

Given the enumeration, we need only some logn bits to specify a particular
element. The lemma says that for most elements of S we cannot get away with
much less.

Exercise

Try to come up with a few “counterexamples” to the lemma and understand
why they fail.

The Proof 40

Proof is by very straightforward counting. Let’s ignore floors and ceilings.

The number of programs of length less than logn− c is bounded by

2logn−c − 1 = n2−c − 1.

Hence at least

n− (n2−c − 1) = n(1− 2−c) + 1

strings in S have complexity at least logn− c.

2

Observation 41

It gets worse: the argument would not change even if we gave the program p
access to a database D ∈ 2? as in conditional complexity.

This observation is totally amazing: we could concatenate all the words in S
into a single string

D = w1 . . . ws

that is accessible to p.

However, to extract a single string wi, we still need some log s bits to describe
the first and last position of wi in D.

Unbounded Complexity 42

A similar counting argument shows that all sufficiently long strings have large
complexity:

Lemma

The function x 7→ C(x) is unbounded.

Actually, even x 7→ min
(
C(z) | x ≤ll z

)
is unbounded (and monotonic).

Here x ≤ll z refers to length-lex order.

So even a trivial string 000 . . . 000 has high complexity if it’s just long enough.
Of course, the conditional complexity C(0n |n) is small.

Halting 43

As mentioned, it may happen that U(p) is undefined simply because the
simulation of program p never halts. And, since the Halting Problem is
undecidable, there is no systematic way of checking:

Problem: Halting Problem for U
Instance: Some program p ∈ 2?.
Question: Does p (when executed on U) halt?

Of course, this version of Halting is still semidecidable, but that’s all we can
hope for.

Non-Computability 44

Theorem

The function x 7→ C(x) is not computable.

Proof. Suppose otherwise. Consider the following algorithm A with input n,
where the loop is supposed to be in length-lex order.

foreach x ∈ 2? do
let m = C(x);
if n ≤ m then return x;

Then A halts on all inputs n, and returns the length-lex minimal word x of
Kolmogorov complexity at least n. But then

n ≤ C(x) ≤ C(n) + c ≤ logn+ c′,

contradiction. 2

The Crux of the Matter 45

Let’s try to pin down the problem with computing Kolmogorov-Chaitin
complexity.

Given a string x of length n, we would look at all programs p1, . . . , pN of
length at most n+ c.

We run all these programs on U , in parallel.

At least one of them, say, pi, must halt on output x.

Hence C(x) ≤ |pi|.

But unfortunately, this is just an upper bound: later on a shorter program pj
might also output x, leading to a better bound.

But other programs will still be running; as long as at least one program is still
running we only have a computable approximation, but we don’t know whether
it is the actual value.

The Connection 46

Consider the following variant of the Halting set K0, and define the
Kolmogorov set K1:

K0 = { e | {e}() ↓ }

K1 = { (x, n) | C(x) = n }

Theorem

K0 and K1 are Turing equivalent.

Proof.

We have just seen that K1 is K0-decidable.

Opposite Direction 47

This is harder, much harder.

Let n = |Me| where the Turing machine is encoded in binary.

Use oracle K1 to filter out the set S = { z ∈ 22n | C(z) < 2n }.
Determine the time τ when all the corresponding programs ẑ halt.

Claim: {e}() ↓ iff {e}τ () ↓

Assume otherwise, so {e}() ↓ but {e}τ () ↑.
Use Me as a clock to determine t > τ such that {e}t() ↓.
But then we can run all programs of size at most 2n− 1 for t steps and obtain
S, and thus a string z′ ∈ 22n of complexity at least 2n.

Alas, the computation shows that C(z′) ≤ n, contradiction.

2

Limits 48

If you don’t like oracles, we can also represent C(x) as the limit of a
computable function:

C(x) = lim
σ→∞

D(x, σ)

where D(x, σ) is the length of the shortest program p < σ that generates
output x in at most σ steps, σ otherwise. So D is even primitive recursive.

Note that D(x, σ) is decreasing in the second argument.

As a consequence, C(x) is a Σ2 function, just on the other side of
computability.

Barzdin’s Lemma 49

Theorem (Barzdin 1968)

Let A be any semidecidable set and denote its characteristic function by χ.
Then C(χ[n] |n) ≤ logn+ c.

Proof.

Dovetail the computation of the machine accepting A on inputs less than n.

Terminate as soon as the number of convergent computations is
|A ∩ [0, n− 1]|, a number that can be specified in logn bits.

2

Note, though, that the dovetailing make take more steps than any recursive
function in n. E.g., let A = ∅′ be the jump.

� Wolfram Prize

� Program-Size Complexity

3 Prefix Complexity

� Incompleteness

Where Are We? 51

Kolmogorov-Chaitin algorithmic information theory provides a measure for the
“complexity” of a bit string (or any other finite object). This is in contrast to
language based models that only differentiate between infinite collections.

Since the definition is closely connected to Halting, the complexity function
C(x) fails to be computable, but it provides an elegant theoretical tool and can
be used in lower bound arguments.

And it absolutely critical in the context of randomness; more later.

A Nuisance 52

Recall that our model of computation used in Kolmogorov-Chaitin complexity
is a universal, one-tape Turing machine over the tape alphabet Γ = {0, 1, b},
with binary input and output.

This causes a number of problems because it is difficult to decode an input
string of the form

p = q z

into an instruction part q and a data part z (run program q on input z).

Of course, this kind of problem would not surface if we used real programs
instead of just binary strings. We should try to eliminate it in our setting, too.

The Book 53

M. Li, P. Vitányi

An Introduction to Kolmogorov Complexity and its Applications

Springer, 1993

Encyclopedic treatment.

But note that some things don’t quite type-check (N versus 2?).

Prefix Programs 54

The key idea is to restrict our universal machine a little bit.

Upre
p x

We require that P ⊆ 2?, the collection of all syntactically correct programs for
Upre, is a prefix set: no valid program is a prefix of another.

Note that this condition trivially holds for most ordinary programming
languages (at least in spirit).

Prefix Machines 55

Throughout we only consider Turing machines with binary input and output
(plus a blank symbol). Call a Turing machine M prefix if its halting set
{ p ∈ 2? |M(p) ↓ } is prefix.

Note that simulation is particularly simple for prefix machines: to simulate M
on M ′ we can set up a header h such that

M ′(hp) 'M(p)

for all M -admissible programs p.

Converting to Prefix 56

Lemma

For any Turing machine M , we can effectively construct a prefix Turing
machine M ′ such that ∀ p ∈ 2?

(
M ′(p) ↓ ⇒ M(p) 'M ′(p)

)
and

M prefix ⇒ ∀ p ∈ 2?
(
M(p) 'M ′(p)

)

Of course, in general M ′ will halt on fewer inputs and the two machines are by
no means equivalent (just think what happens to a machine with domain 0?).

Proof 57

Suppose we have an ordinary machine M and some input p ∈ 2?. M ′

computes on p as follows:

Enumerate the domain of M in some sequence (qi)i≥0.

If qi = p, return M(p).

If qi is a proper prefix of p, or conversely, diverge.

It is easy to check that M ′ is prefix and will define the same function as M ,
provided M itself is already prefix.

As a consequence, we can enumerate all prefix functions {e}pre just as we can
enumerate ordinary computable functions.

Universal Prefix Machines 58

The idea of a universal machine that only converges on a prefix set is perfectly
well motivated in the world of programming languages, but how about an
actual Turing machine?

No problem, we can define U ′ so that it checks for inputs of the form

p = 0u10u2 . . . 0ur 1

If the input has the right form, U ′ computes U(u1 . . . ur).

Otherwise it simply diverges.

Prefix Complexity 59

Definition

Let Upre be a universal prefix Turing machine. Define the prefix
Kolmogorov-Chaitin complexity of a string x by

K(x) = min
(
|p| | Upre(p) ' x

)

Note that in general K(x) > C(x): there are fewer programs available, so in
general the shortest program for a fixed string will be longer than in the
unconstrained case.

Of course, K(x) is again not computable.

Connection 60

The following mutual bounds are due to Solovay:

K(x) ≤ C(x) + C(C(x)) + O(C(C(C(x))))

C(x) ≤ K(x)−K(K(x))−O(K(K(K(x))))

This pins down the cost of dealing with prefix programs as opposed to arbitrary
ones.

Print x Revisited 61

Recall that for ordinary Kolmogorov-Chaitin complexity it is easy to get an
upper bound for C(x): the program

print “x1x2 . . . xn”

does the job.

But if we have to deal with the prefix condition, things become a bit more
complicated. We could use delimiters around x, but remember that our input
and output alphabet is fixed to be 2 = {0, 1}.

We could add symbols, but that does not solve the problem.

Self-Delimiting Programs 62

In the absence of delimiters, we can return to our old idea of self-delimiting
programs. Informally, we could write

print next n bits x1x2 . . . xn

In pseudo-code this is fine, but in our Turing machine model we have to code
everything as bits. For this to work we need to be able to distinguish the
instruction bits from the bits for n.

Alas, coding details are essential to produce prefix programs and to obtain a
bound on K(x).

A Standard Prefix Code 63

Here is a simple way to satisfy the prefix condition: code a bit string x as

E(x1 . . . xn) = 0x1 0x2 . . . 0xn−1 1xn

so that |E(x)| = 2|x|.

Of course, there are other obvious solutions such as 0|x|1x.

Both approaches double the length of the string, which doubling would lead to
a rather crude upper bound 2n+ O(1) for the prefix complexity of a string via
the program

print E(x)

Can we do better?

Improving the Prefix Code 64

How about leaving x = x2x2 . . . xn unchanged, but using E to code n = |x|,
the length of x:

E(|x|)x

Note that this still is a prefix code and we now only use some 2 logn+ n bits
to code x.

But why stop here? We can also use

E(||x||) |x|x

This requires only some 2 log logn+ logn+ n bits.

Iteration 65

In fact, we can iterate this coding operation. Let

E0 := E

Ei+1(x) := Ei(|x|)x

It is not hard to show that all the Ei are prefix codes.

But there is still a little problem: what is the optimal choice of k so that Ek(x)
has minimal length? Clearly k depends on the length of x.

We can handle this nicely by defining an “infinity code” E∞ that works for all
x.

Taking Things to the Limit 66

Here it is:

E∞(x) = lenk(x) 0 lenk−1(x) 0 . . . |x| 0x 1

where k = len∗(x) is just a discrete version of an iterated logarithm:

len1(x) = |x|
leni+1(x) = |leni(x)|

len∗(x) = min
(
i | leni(x) = 2

)

Example

For a bit-string x of length 20000 we obtain the following leni(x):

100111000100000, 1111, 100, 11, 10

So the length of E∞(x) is 20000 + 32.

The Infinity Code 67

How much do we have to pay for a prefix version of x? Essentially a sum of
iterated logs.

Lemma

|E∞(x)| = n+ logn+ log logn+ log log logn . . .+ log∗(n) + O(1)

So this is an upper bound on K(x).

Of course, some other coding scheme might produce even better results.

A good rough approximation to K(x) is n+ logn, in perfect keeping with our
intuition about

print next n bits x1x2 . . . xn

Why Bother? 68

It’s clear that prefix complexity is a bit harder to deal with than ordinary
Kolmogorov-Chaitin complexity. What are the payoffs?

For one thing, it is much easier to combine programs. This is useful e.g. for
concatenation.

Suppose we have prefix programs p and q that produce x and y, respectively.

But then pq is uniquely parsable, and we can easily find a header program h
such that

h p q

is an admissible program for Upre that executes p and q to obtain xy.

Thus
K(xy) ≤ K(x) +K(y) + O(1)

Even Better 69

Define K(x, y) to be the length of the shortest program that writes x b y on
the tape (recall that our tape alphabet is {0, 1, b}).

Note that K(xy) ≤ K(x, y) + O(1), but the opposite direction is tricky (think
about x, y ∈ 0?).

At any rate, the last argument shows that K() is subadditive:

K(x, y) ≤ K(x) +K(y) + O(1)

This simply fails for plain KC complexity.

Better Mousetrap 70

From a more axiomatic point of view, plain KC complexity is slightly deficient
in several ways:

Not subadditive: C(x, y) ≤ C(x) + C(x) + c.

Not prefix monotonic: C(x) ≤ C(xy) + c.

Plain KC complexity does not help much when applied to the problem of
infinite random sequences.

Many arguments still work out fine, but there is a sense that the theory could
be improved.

Here is the killer app for prefix complexity.

Chaitin’s Ω 71

Definition

The total halting probability of any prefix program is defined to be

Ω =
∑

Upre(p)↓

2−|p|

Ignoring the motivation behind this for a moment, note that this definition
works because of the following bound.

Lemma (Kraft Inequality)

Let S ⊆ 2? be a prefix set. Then
∑
x∈S 2−|x| ≤ 1.

But Why? 72

We can define the halting probability for a single target string x to be

P (x) =
∑

Upre(p)'x

2−|p|.

and extend this to sets of strings by adding: P (S) =
∑
x∈S P (x).

Then Ω = P (2?). Ω depends quite heavily on Upre, so one could write Ω(Upre)
or some such for emphasis.

Proposition

Ω is a real number and 0 < Ω < 1.

In fact, for one particular Upre, one can show with quite some pain that

0.00106502 < Ω(Upre) < 0.217643

Randomness 73

Proposition

Ω is incompressible in the sense that K(Ω[n]) ≥ n− c, for all n.

As a consequence, (the binary expansion of) Ω is Martin-Löf random.

This may seem a bit odd since we have a perfectly good definition of Ω in
terms of a converging infinite series. But note the Halting Problem lurking in
the summation – from a strictly constructivist point of view Ω is in fact quite
poorly defined.

Halting and Ω 74

Lemma

Consider q ∈ 2n. Given Ω[n], it is decidable whether Upre halts on input q.

Proof.

Start with approximation Ω′ = 0.

Dovetail computations of Upre on all inputs.

Whenever convergence occurs on input p, update the approximation:
Ω′ = Ω′ + 2−|p|.

Stop as soon as Ω′ ≥ Ω[n]. Then

Ω[n] ≤ Ω′ < Ω < Ω[n] + 2−n.

But then no program of length n can converge at any later stage. 2

If Only . . . 75

For n ≈ 10000, knowledge of Ω[n] would settle, at least in principle, several
major open problems in Mathematics such as the Goldbach Conjecture or the
Riemann Hypothesis:

These conjectures can be refuted by an unbounded search, and the
corresponding Turing machine can be coded in 10000 bits.

For example, here is the Goldbach conjecture:

Conjecture: Every even number larger than 2 can be written as the sum of two
primes.

We can easily construct a small Turing machine that will search for a
counterexample to this conjecture, and will halt if, and only if, the Goldbach
conjecture is false.

Time Complexity 76

Of course, we don’t have the first 10000 bits of Ω, nor will we ever.

In fact, things are much, much worse than that.

Suppose some demon gave you these bits. It would take a long time to exploit
this information: the running time of the oracle algorithm above is not bounded
by any recursive function of n.

The answers would be staring at us, but we could not pull them out.

� Wolfram Prize

� Program-Size Complexity

� Prefix Complexity

4 Incompleteness

Hilbert’s Dream 78

David Hilbert wanted to crown
2000+ years of development in
math by constructing an
axiomatic system that is

consistent

complete

decidable

Alas . . .

Harsh Reality 79

Theorem (Gödel 1931)

Every consistent reasonable theory of mathematics is incomplete.

Theorem (Turing 1936)

Every consistent reasonable theory of mathematics is undecidable.

Good news for anyone interested in foundations, who would want to live in a
boring world?

The Proofs 80

Gödel’s argument is a very careful elaboration and formalization of the old liar’s
paradox:

This here sentence is false.

Turing uses classical Cantor-style diagonalization applied to computable reals.

Both arguments are perfectly correct, but they seem a bit ephemeral; they
don’t quite have the devastating bite one might expect.

Ω can help to make the limitations of the formalist/axiomatic approach much
more concrete. First a warm-up.

Normal Numbers 81

Émile Borel defined a normal number in base B to be a real r with the
property that all digits in the base B expansion of r appear with limiting
frequency 1/B.

Theorem (Borel)

With probability 1, a randomly chosen real is normal in any base.

Alright, but how about concrete examples? It seems that
√

2, π and e are
normal (billions of digits have been computed), but no one currently has a
proof.

Champernowne’s Number 82

C = 0.12345678910111213141516171819202122 . . .

Champernowne showed that this number is normal in base 10 (and powers
thereof), the proof is not difficult.

Proposition

Ω is normal in any base.

Of course, there is a trade-off: we don’t know much about the individual digits
of Ω.

Proving Theorems 83

Time to get serious. Fix some n. Suppose we want to prove all correct
theorems of the form

K(x) ≥ n K(x) = m

where m < n and x ∈ 2?.

How much information would we need to do this?

All we need is the maximal halting time τ of all programs of length at most
n− 1. It is not hard to see that

K(τ) = n+ O(1)

Essentially nothing less will do.

Theories 84

In the following we assume that T is some axiomatic theory of mathematics
that includes arithmetic.

Think of T as Peano Arithmetic, though stronger systems such as
Zermelo-Fraenkel with Choice is perfectly fine, too (some technical details get
a bit more complicated; we have to interpret arithmetic within the stronger
theory).

Assertions like
K(x) ≥ n K(x) = m

can certainly be formalized in T and we can try to determine how easily these
might be provable in T .

Consistency 85

We need T to be consistent: it must not prove wrong assertions. This is
strictly analogous to the situation in Gödel’s theorem: inconsistent theories
have no trouble proving anything.

Technically, all we need is Σ1 consistency: any theorem of the following form,
provable in T , must be true:

∃xϕ(x)

where ϕ is “primitive recursive” (defines a primitive recursive property in T)
and the existential quantifier is arithmetic.

Measuring Theories 86

We assume that certain rules of inference are fixed, once and for all. So the
theory T comes down to its set of axioms.

If there only finitely many, we can think of them as a single string and define
K(T) accordingly.

If there are infinitely many axioms (as in PA), the set of all axioms is still
decidable and we can define K(T) as the complexity of the corresponding
decision algorithm.

Note that this approach totally clobbers anything resembling semantics: it does
not matter how clever the axioms are, just how large a data structure is needed
to specify them.

Chaitin’s Theorem 87

Theorem (Chaitin 1974/75)

If T proves the assertion K(x) ≥ n, then n ≤ K(T) + O(1).

Proof.

Enumerate all theorems of T , looking for statements K(x) ≥ n.

For any m ≥ 0, let xm be the first string so discovered where n > K(T) +m.

By consistency, we have

K(T) +m < K(xm)

By construction,

K(xm) ≤ K(T ,K(T),m) + O(1)

≤ K(T) +K(m) + O(1)

Proofs are Useless 88

This is one place where subadditivity is critical.

But then it follows that
m < K(m) + O(1)

and thus m ≤ m0 for some fixed m0.

2

Similarly one can prove that no consistent theory can determine more than

K(T) + O(1)

bits of Ω.

We have a perfectly well-defined real, but we can only figure out a few of its
digits.

Solovay’s Theorem 89

One can sharpen Chaitin’s theorem to a point where it almost seems absurd:

Theorem

Let T be as before. Then there is a universal prefix machine Upre such that

Peano Arithmetic proves that Upre is indeed universal.

T cannot determine a single digit of Ω.

Of course, the Ω in question here is Ω(Upre).

The proof depends on a very clever construction of a particular universal prefix
machine and uses Kleene’s recursion theorem.

	Wolfram Prize
	Program-Size Complexity
	Prefix Complexity
	Incompleteness

