
GTI

More Complexity

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

1 Fast Algorithms

� Hard Problems

Total Recall 3

We are particularly interested in

P = TIME(poly)

problems solvable in polynomial time. Alas, polynomial time is often
elusive, and we may have to make do with exponential running times:

EXP1 =
⋃

TIME(2c n
∣∣ c > 0), simple exponential time.

EXPk =
⋃

TIME(2c n
k ∣∣ c > 0), kth order exponential time.

EXP =
⋃
EXPk, full exponential time.

Our World 4

n

n2

n3

...

linear

quadratic

P(Σ∗)

cubic

EXP1

EXP2

...

EXP

P

Example 1: Shortest Paths 5

You are given a directed graph G = 〈V,E 〉 with labeled edges
λ : E → N+ .

Think of λ(e) as the length (or cost) of edge e. The length λ(π) of a
path π in G is the sum of all the edges on the path.

The distance from node s to node t is the length of the shortest path:

dist(s, t) = min
(
λ(π) | π : s −→ t

)

If there is no path, let’s say dist(s, t) =∞.

Note that we only need to consider simple paths: no repetition of
vertices.

Google Maps 6

The standard problem is to compute dist(s, t) for a given source/target
pair s and t in G.

If you prefer decision problems write it this way:

Problem: Distance
Instance: A labeled digraph G, nodes s and t, a bound B.
Question: Is dist(s, t) ≤ B?

Note that the decision version and the function version are very closely
related.

Upper Bound 7

A brute-force approach is to translate the definition directly into code:
compute all simple paths from s to t, determine their lengths, find the
minimum.

Straightforward, but there is a glitch: the number of such paths is
exponential in general.

Dijkstra 1956 8

But one can get away with murder (read: a polynomial amount of
computation) by acting greedy: at every step, always take the cheapest
possible extension.

1 shortest_path(vertex s) {
2 forall x in V do
3 dist[x] = infinity; add x to Q;
4

5 dist[s] = 0; // s reachable
6

7 while(Q not empty) {
8 x = delete_min(Q); // x reachable
9 forall (x,y) in E do

10 if((x,y) requires attention)
11 dist[y] = dist[x] + cost(x,y);
12 }
13 }

Dijkstra Contd. 9

Here Q is a priority queue (a specialized container data structure), and
an edge (x, y) requires attention if

1 dist[y] > dist[x] + cost(x,y);

Since all distance values are associated with an actual path, this means
that the current value for y must be wrong.

It is a small miracle that updating only obviously wrong estimates at the
cheapest node in a systematic manner is enough to get the actual
distances in the end.

Example 2: Integer Multiplication 10

Multiplication of two k-bit integers seems to take Θ(k2) steps:

12345 · 6789 = 83810205

7 4 0 7 0
8 6 4 1 5

9 8 7 6 0
1 1 1 1 0 5

After all, we have to write down all the digit-products and then perform a
big addition at the end, right?

Divide-and-Conquer 11

Alas, one can try recursively attack the problem by breaking up the
numbers into hi/lo-order bits. Let’s say with use binary and
0 ≤ x, y < 22k.

x = x1 · 2k + x2

y = y1 · 2k + y2

Then

x · y = x1 · y122k + (x1 · y2 + x2 · y1)2k + x2 · y2
Here 0 ≤ xi, yi < 2k.

This produces a recurrence t(n) = 4 · t(n/2) + n for the running time.

Quoi? 12

We need to solve t(n) = 4 · t(n/2) + n.

One good method is repeated substitution: plug the thing into itself a
couple of times, and look for a pattern:

t(n) = 4 · t(n/2) + n

= 42 · t(n/22) + (22 − 1)n

= 43 · t(n/23) + (23 − 1)n

. . .

= 4k · t(n/2k) + (2k−1 − 1)n

Assume for simplicity n = 2k and get t(n) = Θ(n2), no better than the
kindergarten algorithm.

Karatsuba 1960 13

But there is a trick to get rid of one multiplication:

a = x1 · y1
b = x2 · y2
c = (x1 + x2) · (y1 + y2)

d = c− a− b = x1y2 + x2y1

So we only need 3 multiplications total!

This produces a recurrence

t(n) = 3 · t(n/2) + n

To solve the last recurrence, it is best to draw a call tree:

The number of nodes at level k is 3k (root is level 0).

Each node at level k corresponds to n/2k.

So the total amount of work on level k is n(3/2)k.

There are log2 n levels.

Calculemus 15

t(n) =

log2 n∑
i=0

n(3/2)i

= n

log2 n∑
i=0

(3/2)i

= n
(
(3/2)log2 n+1 − 1

)
/(3/2− 1)

≈ 3 · 3log2 n

= Θ(nlog2 3)

t(n) = Θ(nlog2 3) ≈ Θ(n1.59)

And Polynomials? 16

In many ways, polynomials behave much like integers (they form a ring).

Pleasant Surprise: Karatsuba’s algorithm works just as well with
polynomials.

The only difference is that we split the polynomial into high and low
degree monomials. In terms of the coefficient list this comes down to a
split in the middle.

Is This It? 17

One can try to subdivide the given number into smaller blocks (say,
thirds) and get even better results, at least asymptotically.

But there is a much stronger result (Fürer, 2007):

Two n-bit integers can be multiplied in time

n log n 2log
?n

In the RealWorldTM, log? is constant.

Example 3: Matrix Multiplication 18

Matrix multiplication obviously can be handled in time O(n3):

A(i, j) =

n∑
k=1

B(i, k) · C(k, j)

On the face of it, it looks like this bound is tight: matrix multiplication
does seem to require Ω(n3) operations since A has n2 entries, and each
costs n steps.

Small Examples 19

1 2 0
2 0 1
0 2 1

×
1 1 1

1 0 1
3 2 1

 =

3 1 3
5 4 3
5 2 3

a b c
d e f
g h i

×
0 0 1

0 1 0
1 0 0

 =

c b a
f e d
i h g

Ω(n3) seems plausible, but it’s quite wrong: one can use a
divide-and-conquer strategy to break through the cubic barrier.

Strassen 1969 20

(
A B
C D

)
×
(
E F
G H

)
=

(
AE +BG AF +BH
CE +DG CF +DH

)

Some “random” auxiliaries:

q1 = (A+D)(E +H)

q2 = D(G− E)

q3 = (B −D)(G+H)

q4 = (A+B)H

q5 = (C +D)E

q6 = A(F −H)

q7 = (C −A)(E + F)

Assembly 21

Looks wild, but costs only 7 n/2-multiplications, plus 14 n/2-additions.
The actual product then looks like(

q1 + q2 + q3 − q4 q4 + q6
q2 + q5 q1 − q5 + q6 + q7

)
Recurrence now has form

T (n) = 7T (n/2) + n2.

Solution: O(nlog2 7) ≈ O(n2.81).

Even Faster 22

Currently the best methods are a tiny bit better than a classical result by
Coppersmith, Winograd from 1990 O(n2.376)

Example 4: Primality Testing 23

Suppose you have a k-digit number n, let’s say k = 1000.

How do you check whether n is prime?

One can easily get rid of potential small divisors (like 2, 3, 5, 7, 11) in
linear time using finite state machines, but that does not help much: we
need to check factors up to

√
n ≈ 2500.

So this is one of the cases where we really have to use the logarithmic
cost function, there is no point pretending that, say, a multiplication
takes O(1) steps.

Agrawal-Kayal-Saxena 2002 24

In 2002, a miracle happened: Agrawal, Kayal and Saxena showed that
primality testing of k-bit numbers is in time polynomial in k.

Amazingly, the algorithm uses little more than high school arithmetic.

The original algorithm had time complexity O(n12), but has since been
improved to O(n6).

Alas, it seems useless in the RealWorldTM, probabilistic algorithms are
much superior.

Small Witnesses 25

The surprising algorithm uses polynomial arithmetic. Suppose wlog that
an integer n ≥ 2 is not a perfect power. Then n is prime iff for some
suitable number r (called a witness for n):

(x+ a)n = xn + a (mod xr − 1)

for all 1 ≤ a ≤ √r log n where all arithmetic is with modular numbers
mod n.

This looks like a mess, but one can implement all the necessary
operations in time polynomial in log n, given the fact that the least
witness r is not too large.

Pretty Good 26

We can use fast exponentiation (repeated squaring) to compute
(x+ a)n. At each step, we reduce modulo xr − 1.

So suppose we have some intermediate result

q(x) =
∑
i<r

cix
i.

Squaring we get

q2(x) =
∑
i<2r

dix
i.

Reducing modulo xr − 1 produces∑
i<r

(di + di+r)xi.

Unfortunately, it seems the actual running time, though polynomial, is so
horrendous that this method will never be practical.

The Message? 27

In many cases, a problem description carries its own solution: the
solution is clearly computable.

But getting an efficient solution is often much, much harder and requires
additional insights (maybe even theorems).

The fast algorithms are often much harder to prove correct.

Unfortunately, we have reached the point where there is a race for better
and better asymptotic running times, without anyone every implementing
the algorithms, see Knuth.

http://www.cs.cmu.edu/~cdm/resources/Knuth-20q.pdf

� Fast Algorithms

2 Hard Problems

Designing Hard Problems 29

Where is a good place to look for difficult decision problems?

Not quite as hard as Halting, we would like a problem that is still
decidable but does not admit any fast algorithms.

A generic decision problem asks a specific question (with parameters)
and the answer to the question may be hard to come by in some cases.

Brilliant Idea:
How about asking a lot of questions simultaneously?
Maybe even all possible questions?

Quoi? 30

“All possible questions” is obviously way too much, but maybe we could
ask all questions in a certain domain? All questions that can be asked in
some formal manner?

Problem: Entscheidungsproblem
Instance: A sentence Φ in some formal language.
Question: Is Φ true?

For example, the sentence could be a statement in arithmetic:

∀x∃ y (x < y ∧ prime(y) ∧ prime(y + 2))

Syntactically fairly simple, but is it true?

Hilbert 31

Herr Hilbert was hopeful in the 1920s that the Entscheidungsproblem
might be solvable for large areas of mathematics.

In 1930 Gödel took a big step in the direction of making Hilbert’s dream
come true: he showed that there is a nice system of logic (first-order
logic) where

all “true” sentences are provable, and

the collection of proofs is decidable, and the collection of provable
sentences is semidecidable.

In other words, proofs are fairly simple syntactical objects. There is no
magic anywhere.

“Truth” 32

The “true” indicates that this requires a slightly different definition of
truth than the one ordinarily used by mathematicians (and humans in
general): it’s really semantic consequence.

Suppose you have a system Γ of axioms and a particular formula Φ.

Suppose further that any structure that satisfies all the axioms also
satisfies Φ: in any world described by Γ, the assertion Φ is true.

Then Φ is already provable from Γ: our logic knows about Φ.

Gödel Incompleteness 33

And then he ruined it all in 1931 by showing

there is true sentence of arithmetic,

that is not provable in any reasonable system.

Unfortunately, this means, among other things, that the
Entscheidungsproblem (for arithmetic) is undecidable.

To be clear: Gödel’s theorem does not clobber one particular system of
arithmetic, it clobbers all possible systems. It’s a feature, not a bug.

And Matiyasevic 34

In 1970 Matiyasevic proved that even a simple formula like

∃x1, x2, . . . , xn P (a, x1, . . . , xn) = 0

where P is a polynomial with integer coefficients cannot be tested for
truth in general (Diophantine sets are semidecidable, but not decidable in
general).

So one does not need very complicated sentences to ruin decidability for
arithmetic.

The Upside 35

Without Gödel’s Theorem, life would be endlessly boring.

And no one would need to hire a ToC expert. Just turn the crank if you
need another theorem. Awful.

More importantly, one can now look for more limited domains of
discourse and try to find a solution for the Entscheidungsproblem in the
particular domain.

Presburger Arithmetic 36

How about weaker arithmetic, with fewer operations?

Realistically, the only useful choice is to drop multiplication. This yields
Presburger arithmetic:

N0 = 〈N; +, <, 0 〉

Since multiplication is missing one cannot describe polynomials in this
setting, only linear combinations.

So the problem of Diophantine equations disappears.

Admissible Operations 37

Full multiplication is absent, but multiplication by a constant is available;
for example

y = 3 ∗ x ⇐⇒ y = x+ x+ x

We can also do modular arithmetic with fixed modulus:

y = x mod 2 ⇐⇒ ∃ z (x = 2 ∗ z + y ∧ y < 2)

y = x div 2 ⇐⇒ ∃ z (x = 2 ∗ y + z ∧ z < 2)

A non-trivial example of a valid Presburger formula:

∃x∀ y ∃u, v (x < y ⇒ y = 5 ∗ u+ 7 ∗ v)

Presburger’s Theorem 38

Without multiplication arithmetic is much less complicated.

Theorem (M. Presburger 1929)

Presburger arithmetic is decidable.

Presburger’s original algorithm is based on quantifier elimination: a
formula is translated into an equivalent formula that has one fewer
quantifier.

Unfortunately, it turns out that the complexity of Presburger arithmetic is
pretty bad:

Ω(22
cn

) and O(22
2cn

)

Aside: John von Neumann 39

Physics Nobel laureate E. Wigner was once asked why Hungary produced
so many geniuses early in the 20th century.

He replied there was only one genius, John von Neumann.

There are lots of depressing anecdotes about him, among others the old
dog-and-bicycle story, designed to flummox mathematicians.

Two bicycles, 20 km apart, moving at 10 kmh each, dog
zigzags back and forth at 20 kmh till they meet.

How far did the dog run?

Neumann and Gödel 40

When Gödel first announced his incompleteness result at a conference in
Königsberg in 1930, von Neumann was the only audience member who
understood what just had happened.

Which is doubly remarkable since, up to this point, he had been working
on Hilbert’s program trying to find a decision algorithm for math.

And he independently discovered the second incompleteness theorem (a
system cannot prove its own consistency).

Another Gödel Bombshell 41

It was generally assumed that Gödel never spent a second thinking about
digital computers or complexity theory.

Surprisingly, in the 1980s a letter from Gödel to John von Neumann from
1956 surfaced, in which he outlines some fundamental complexity
questions.

Unfortunately, von Neumann was dying of cancer, and Gödel apparently
did not pursue the matter any further–a huge missed opportunity.

http://www.cs.cmu.edu/~cdm/resources/Goedel-letter.pdf

	Fast Algorithms
	Hard Problems

