

Stable matching problem

2-Sided Markets

A market with 2 distinct groups of participants each with their own preferences.

2-Sided Markets				
l. 2. 3.	B A	P	Company A	I. Alice 2. Bob 3. Charlie 4. David
3. 4.	C D		Company B	•
			Company C	•
Other examples: medical residents - hospitals students - colleges professors - colleges		l residents - hospitals ts - colleges	Company D	 Bob David Alice Charlie

How do you solve a problem like this?
I. Formulate the problem
 Ask: Is there a trivial algorithm? Find and analyze.
3. Ask : Is there a better algorithm? Find and analyze.
4. Maker further observations.

The Gale-Shapley proposal algorithm

While there is a man **m** who is not matched:

- Let **w** be the highest ranked woman in **m**'s list to whom **m** has not proposed yet.
- If w is unmatched, or w prefers m over her current match:
 - Match **m** and **w**.
 - (The previous match of **w** is now unmatched.)

Cool, but does it work correctly?

- Does it always terminate?
- Does it always find a stable matching?
- (Does a stable matching always exist?)

Gale-Shapley algorithm analysis

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^2 iterations.

- A *constructive* proof that a stable matching always exists.
- 3 things to show:

Gale-Shapley algorithm analysis

I. Number of iterations is at most n^2 .

Gale-Shapley algorithm analysis 2. The algorithm terminates with a perfect matching. If we don't have a perfect matching:

A man is not matched

 \implies All women must be matched

⇒ All men must be matched. Contradiction

Further questions

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most $\,n^2\,$ iterations.

Does the order of how we pick men matter? Would it lead to different matchings?

Is the algorithm "fair"? Does this algorithm favor men or women or neither?

Further questions

 \mathbf{m} and \mathbf{w} are *valid partners* if there is a stable matching in which they are matched.

best(m) = highest ranked valid partner of m

Theorem:

	Proof of man optimality	
Proof:		

worst(w) = lowest ranked valid partner of w Theorem:
Theorem:

	Proof of woman pessimality	
Proof:		

Real-world applications

Variants of the Gale-Shapley algorithm is used for:

- matching medical students and hospitals
- matching students to high schools (e.g. in New York)
- matching students to universities (e.g. in Hungary)
- matching users to servers
 - :