

February 20th, 2018

Stable matching problem

2-Sided Markets

A market with 2 distinct groups of participants each with their own preferences.

Aspiration: A Good Centeralized System

What can go wrong?

How do you solve a problem like this?
I. Formulate the problem
2. Ask: Is there a trivial algorithm? Find and analyze.
3. Ask: Is there a better algorithm? Find and analyze.
4. Maker further observations.

Formalizing the problem

An instance of the problem can be represented as a tuple $(X, Y)+$ preference list for each element.

$$
\begin{aligned}
& \text { Students } \\
& \text { Companies } \\
& |X|=|Y|=n
\end{aligned}
$$

Goal:

Formalizing the problem

What is a stable matching?

A variant: Roommate problem	
(c, b, d) a	oc (b, a, d)
(a, c, d) b	od (a, c, b)

(a,c,d) be
-d (a,c,b)

Does this have a stable matching?

Stable matching: Is there a trivial algorithm?

Trivial algorithm:

The Gale-Shapley proposal algorithm

While there is a man \mathbf{m} who is not matched:

- Let w be the highest ranked woman in m's list to whom m has not proposed yet.
- If \mathbf{w} is unmatched, or \mathbf{w} prefers \mathbf{m} over her current match:
- Match m and w.
(The previous match of w is now unmatched.)

Cool, but does it work correctly?

- Does it always terminate?
- Does it always find a stable matching?
(Does a stable matching always exist?)

Gale-Shapley algorithm analysis

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^{2} iterations.

A constructive proof that a stable matching always exists.

3 things to show:

Gale-Shapley algorithm analysis

1. Number of iterations is at most n^{2}.

Gale-Shapley algorithm analysis

2. The algorithm terminates with a perfect matching.

If we don't have a perfect matching:
A man is not matched
\Longrightarrow All women must be matched
\Longrightarrow All men must be matched.
Contradiction

Gale-Shapley algorithm analysis

3. The matching has no unstable pairs.
"Improvement" Lemma:
(i) A man can only go down in his preference list.
(ii) A woman can only go up in her preference list.

Unstable pair:

(m, w) unmatched
but they prefer each other.

Further questions

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^{2} iterations.

Does the order of how we pick men matter?
Would it lead to different matchings?

Is the algorithm "fair"?
Does this algorithm favor men or women or neither?

Further questions

\mathbf{m} and \mathbf{w} are valid partners if there is a stable matching in which they are matched.
best $(\mathbf{m})=$ highest ranked valid partner of \mathbf{m}

Theorem:

Proof of man optimality

Proof:

Further questions

worst(w) = lowest ranked valid partner of w

Theorem:

Proof of woman pessimality

Proof:

Real-world applications

Variants of the Gale-Shapley algorithm is used for:

- matching medical students and hospitals
- matching students to high schools (e.g. in New York)
- matching students to universities (e.g. in Hungary)
- matching users to servers
:

