

Why graphs? Why now?

Some examples where graphs appear	

Formal Definition: (undirected) graph
A graph G is a tuple (V, E) , where
Example:
$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
$E = \{\{v_1, v_2\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_5, v_6\}\}$

Formal Definition: (undirected) graph

Example:

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

$$E = \{\{v_1, v_2\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_5, v_6\}\}$$

Matrix representation (adjacency matrix):

Ist Challenge

Is it possible to have a party with 251 people in which everyone knows exactly 5 other people in the party?

Is it possible to have a graph with 251 vertices in which each vertex is adjacent to exactly 5 other vertices?

Poll
Is it possible to have a graph with 251 vertices in which each vertex is adjacent to exactly 5 other vertices?
Yes
No
Beats me

2nd Challenge

We have n computers that we want to connect.

We can put a link between any two computers, but the links are expensive.

What is the least number of links we can use?

What is the least number of edges needed to connect n vertices?

Back to the challenge
What is the least number of edges needed to connect n vertices?

Poll
Are n-l edges always necassary to connect n vertices?
Yes
No opinion

2nd Theorem	
Theorem: Let $G = (V, E)$ be a connected graph.	
Then $m \ge n-1$.	
Furthermore,	
$m=n-1 \Longleftrightarrow G ext{ is acyclic.}$	
Proof:	
Imagine the following process:	
- remove all the edges of G.	
- add them back one by one (in an arbitrary order).	
n isolated vertices G	
n CCs I CC component	nt
F	_

2nd Theorem	
Proof (continued):	
	ļ

Eulerian circuit

Eulerian Circuit Problem

Input: a graph G = (V, E)

Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.

Eulerian circuit

Eulerian Circuit Problem

Input: a graph G = (V, E)

Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.

Euler claimed (but did not provide a proof):

A connected graph has an Eulerian circuit **iff** proved by Hierholzer

Efficient algorithm:

- Check that the graph is connected.
- Check that every vertex has even degree.

Hamiltonian cycle

Hamiltonian Cycle Problem

Input: a graph G = (V, E)

Output: Yes if there is a cycle visiting each **vertex** exactly once. No otherwise.

Hamiltonian cycle	
Hamiltonian Cycle Problem <u>Input</u> : a graph G = (V, E)	
Output : Yes if there is a cycle visiting ea exactly once. No otherwise.	ch vertex
Brute-Force Algorithm: - Try all cycles $O(n!)$	
Dynamic Programming Algorithm	n: $O(2^n)$
Clever Algebraic Brute-Force:	$O(1.657^{n})$
Anything better?	