
GIT

Graphs

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

Outline 2

1 Graphs

2 Representation

3 Path Existence

4 BFS and DFS

Ancient History 4

A quote from a famous mathematician (homotopy theory):

Combinatorics (read: graph theory) is the slums of topology.

J. H. C. Whitehead

In the early 20th century “combinatorics” was a label for everything discrete
and really outside of classical mathematics.

Not a good sign.

Less Ancient History 5

Things have improved slightly since.

We have not begun to understand the relationship between com-
binatorics and conceptual mathematics.

J. Dieudonné (1982)

A nicely underhanded compliment.

Still, a lot of combinatorics (and graph theory) is highly algorithmic, so it
naturally fits in the framework of computation: in contrast, say, classical
differential equations are quite problematic. For example, there is currently no
compelling theory of computation on the reals.

Pappus 6

But Beware: 7

Degrees 8

Counting the number of neighbors of a vertex turns out to be important, so
there is some special terminology.

Definition

Let G = 〈V,E〉 be a digraph and u ∈ V a vertex.

The out-degree of u is

odeg(u) = |{ z ∈ V | (u, z) ∈ E }|

The in-degree of u is

ideg(u) = |{ z ∈ V | (z, u) ∈ E }|

The degree of u is the sum of out-degree and in-degree.

In a ugraph the degree of a vertex is defined by

deg(u) = |{ z ∈ V | {u, z} ∈ E }|

Basic Counting 9

Proposition

A digraph on n vertices has at most n2 edges.

A ugraph on n vertices has at most n(n+ 1)/2 edges if one allows self-loops.

A ugraph without self-loops has at most n(n− 1)/2 edges.

So the number of edges is O(n2).

One often has to distinguish between sparse graphs where the number of edges
is much smaller than n2 (say, something like O(n logn) and dense graphs
where it is close to n2.

For graph algorithms, dependency of running time on the number of edges is
usually the critical question.

Handshakes 10

Proposition

In any ugraph,
∑

deg(u) = 2|E|.

As a consequence, the number of odd-degree vertices must be even.

Proposition

In any digraph,
∑

odeg(u) =
∑

ideg(u) = |E|.

� Graphs

2 Representation

� Path Existence

� BFS and DFS

A Small Digraph 12

n = 5 vertices and m = 8 edges (2 self-loops).

Representation: Data Structures 13

edge list list of pairs of integers

(1, 1), (4, 1), (1, 4), (2, 4), (5, 1), (1, 3), (2, 5), (5, 5)

adjacency list array of linked lists

1: 1, 3, 4

2: 4, 5

3: -

4: 1

5: 1, 5

adjacency matrix square Boolean matrix

1 0 1 1 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 1

The Standard Representations 14

Suppose 〈V,E〉 is a digraph on n vertices and m edges. It is often convenient
to assume that V = [n].

Definition

The edge list representation of a digraph consists of a list of length m of
ordered pairs.

The sorted edge list representation of a digraph consists of a sorted list of
length m of ordered pairs.

The adjacency list representation of a digraph consists of an array A of length
n of lists: A[u] is a list of all v ∈ V such that (u, v) ∈ E.

The adjacency matrix representation of a digraph consists of a Boolean matrix
B of size n× n: B[u, v] = 1 ⇐⇒ (u, v) ∈ E.

Exercises 15

Exercise

Concoct conversion algorithms that translate between any two of these
representations. What are the time complexities?

Exercise

Define the digraph Gop = 〈V,Eop〉 by flipping all edges in G:
(u, v) ∈ Eop ⇐⇒ (v, u) ∈ E.

Explain how to compute Gop in all representations. What is the time
complexity of your algorithms?

Memory Requirement 16

Suppose we have n vertices and m edges, so that m ≤ n2.

Sizes of the data structures:

(sorted) edge list: Θ(m)

adjacency list: Θ(n+m)

adjacency matrix: Θ(n2) (but smaller constants)

For sparse graphs, plain adjacency matrices are problematic: the size of the
data structure does not adjust to the actual size of the graph.

Watkins Snark 17

snark n = 50 and m = 75

https://en.wikipedia.org/wiki/Watkins_snark

Sparse 18

random n = m = 100

Not So Sparse 19

random n = 100 and m = 1000

But Beware . . . 20

Any realistic implementation of adjacency matrices uses packed arrays: an
integer is used to represent, say, 64 bits (bit-parallelism).

This approach produces a slight overhead for a query “is (u, v) and edge” but
it allows one to obtain adjacency information about 64 vertices in “one step”.

Asymptotically adjacency matrices are no match for adjacency lists, but for
some reasonable values of n (think a few hundred, depending very much on
hardware) they can be faster.

If you know for some reason that your algorithm will never touch graphs
beyond, say, size 512 you are probably better off with a lovingly hand-coded
adjacency matrix implementation (in a real language like C).

Sparse Matrices 21

As an aside: matrix implementations can be competitive even if the vertex set
is large provided that

the graph is sparse, and

the implementation is based on sparse matrices.

A sparse matrix implementation does not require Θ(n2) storage but Θ(m):
only the non-zero entries in the matrix are associated with storage. This
approach requires fairly messy pointer-based data structures and is quite
difficult to implement.

Some modern computational environments (like Mathematica) use sparse
matrices as the default implementation of a graph.

Local Queries 22

Given two vertices u and v, the most elementary question we can ask is:

Is (u, v) ∈ E ?

The cost of answering this query is

edge list: O(m),

sorted edge list: O(logm),

adjacency list: O(odeg(u)),

adjacency matrix: O(1).

But note that this is just time, we are ignoring space.

Visit thy Neighbor 23

There are many graph algorithms that require a visit to all the neighbors of a
particular vertex. So we have a code fragment of the form

1 vertex u, v;
2

3 u =;
4

5 foreach (u,v) edge do
6 ... v ...

For example, this is how one computes out-degrees.

Neighbor Traversal 24

This type of traversal takes

edge list: Θ(m),

sorted edge list: O(logm+ odeg(u)),

adjacency list: O(odeg(u)),

adjacency matrix: Θ(n).

In other words, an adjacency list implementation works very well, but neither
edge lists nor adjacency matrices are generally suitable for this algorithmic task.

Example: Cycle Testing 25

Suppose we want to check whether a digraph is acyclic.

We will solve a slightly harder problem known as topological sorting:

Given a digraph G, return NO if G has a cycle.

Otherwise return a permutation u1, u2, . . . , un of the vertex set such that
(ui, uj) ∈ E implies i < j.

In other words, we want to arrange the vertices along a line so that all edges go
from left to right. Note that the algorithm returns a “certificate of acyclicity”.

Example 26

1

2

5

8

3

6

9

4

7

10

1 2 5 8 3 6 9 10 7 4

Ranks 27

A good way of representing the permutation is to compute a rank for each
vertex in the graph: rank 1 means the vertex is leftmost, rank 2 is the second
from the left and so on.

In the last example, the ranks are

x 1 2 3 4 5 6 7 8 8 9 10

rk(x) 1 2 5 10 3 6 9 4 8 7 8

1 2 5 8 3 6 9 10 7 4

Warm-Up 28

Proposition

Let G be a digraph such that every vertex in G has in-degree at least 1. Then
G contains a cycle.

Proof.

Show by induction on k that G contains a path of the form

xk, xk−1, xk−2, . . . , x1, x0

where x0 is chosen arbitrarily.

The induction step uses the fact that xk has in-degree at least 1.

For k = n we must have a repeated vertex on this path, and hence a cycle in G.

2

Sanity Check 29

Proposition

A digraph admits a topological sort if, and only if, it is acyclic.

Proof.

It is clear that a graph with a topological sort must be acyclic.

For the opposite direction, argue by induction on the number of vertices.

Since G is acyclic it must have an in-degree 0 vertex u.

Set rk(u) = 1 and continue with G− u.

2

Proof to Algorithm 30

The proof yields a recursive “algorithm” with outline

1 topsort(digraph G) {
2

3 if(n==1) done;
4

5 find u in V s.t. indeg(u)==0;
6 rank[u] = rk++;
7 H = G - u;
8 topsort(H);
9 }

Why the quotation marks?

Towards a Real Algorithm 31

The idea that we compute a subgraph

H = G− u

in line 7 amounts to algorithmic suicide: building a new data structure for H
will require some O(n+m) steps. The search in line 5 is also uncomfortable.

It is much better to simply mark vertex u as being removed.

Of course, we need to make sure that the in-degrees are changed accordingly
and keep track of candidates for removal.

Real TopSort Algorithm 32

1 Stack Z;
2

3 forall v in V
4 if(indeg[v]==0) Z.push(v);
5

6 while(!Z.empty()) {
7 x = Z.pop();
8 rank[x] = rk++;
9 forall (x,y) in E { // neighbor traversal

10 indeg[y]--;
11 if(indeg[y]==0) Z.push(y);
12 }
13 }

Exercises 33

Exercise

Implement topological sorting.

Exercise

How would you compute the in-degree of all vertices in a digraph, in all
representations?

Exercise

How would you check if a ugraph has a triangle: edges {a, b}, {b, c}, {c, a}
where a, b and c are distinct vertices?

� Graphs

� Representation

3 Path Existence

� BFS and DFS

Paths and Reachability 35

In a graph G, node t is reachable from node s if there is a path from s to t in
G.

Problem: Reachability
Instance: A labeled graph G, nodes s and t
Question: Is there a path from s to t in G?

Problem: Bounded Reachability
Instance: A labeled graph G, nodes s and t, a bound B.
Question: Is there a path from s to t in G of length at most B?

Note that if t is reachable then there is a path of length at most n− 1.

Notation 36

We’ll often write

π : u→ v

to indicate that π is a path from u to v and |π| for its length.

The distance from u to v is

dist(u, v) = min
(
|π| | π : u→ v

)
If there is no path, this is assumed to be ∞.

Duh 37

Since we are only dealing with finite graphs, Reachability is clearly decidable.

But brute-force algorithms based on enumeration of all paths are going to be
exponential, even when the graph is acyclic.

Boolean Matrix Multiplication 38

How can we solve Bounded Reachability for B = 2?

If we use Boolean matrices to represent E there is a really simple answer.
Recall that the product C = A ·B of two Boolean matrices is defined by

C(i, j) =
∨
k

A(i, k) ∧B(k, j)

We have emphasized the logical operations here, but often this would simply be
written as C(i, j) =

∑
k A(i, k) ·B(k, j) (standard Boolean algebra).

Proposition

Let A be the adjacency matrix of G. Then Ak(u, v) = 1 iff there is a path
π : u→ v of length k in G.

Knights 39

All Knights 40

All Knights 41

Back To Reachability 42

To solve Reachability, we essentially need to compute the set of all reachable
points:

R(s) = { v ∈ V | ∃π : s→ v }

For the time being, we will deal with reachability for all source vertices s.

Define the reachability matrix A?, a Boolean matrix, by:

A?(u, v) = 1 ⇐⇒ ∃π : u→ v

Clearly, A? is the sum over all the matrices

I, A,A2, A3, . . . , Ak, . . .

Exercises 43

Exercise

Why can the sequence I, A,A2, A3, . . . , Ak, . . . of Boolean matrices for knight
moves not end in a fixed point? What is the period?

Exercise

What would happen with rook, bishop, . . . instead of a knight?

Exercise

Could there be a piece with period 3?

Reachability and BMM 44

We are dealing with finite graphs, so the sequence

I, A,A2, A3, . . . , Ak, . . .

must be ultimately periodic. But then the whole sum is actually

A? = I +A+A2 +A3 + . . .+A`

for some finite `. In fact, by simple geometry we have

A? = I +A+A2 +A3 + . . .+An−1

Alas, computing A? this way takes time O(n) BMMs.

Speedup 45

Let B = A+ I (reflexive closure). Then

Bk = I +A+A2 +A3 + . . .+Ak

So we only need to compute Bn−1.

Using fast exponentiation (repeated squaring) we can do this in logn BMMs.

� Graphs

� Representation

� Path Existence

4 BFS and DFS

Inductive Structure 47

A totally different way to compute the set of reachable points R(s) is to think
of it as being inductively defined. We are now interested in a single source
vertex.

s is in R(s).

If u is in R(s) and (u, v) ∈ E then v is in R(s).

This suggests to start with a “approximation” R = {s} and keep adding the
targets of edges whose source is already in R.

Prototype Algorithm 48

We build an approximation R to R(s) in stages.

Let’s say (u, v) ∈ E requires attention (at some particular point during the
execution of the algorithm) if u ∈ R but v /∈ R.

1

2 R = { s };
3

4 while(some edge (u,v) requires attention)
5 add v to R;
6

7 return R;
8

Correctness 1 49

Proposition

At any time during the execution, R ⊆ R(s).

Proof.

It is easy to check that R ⊆ R(s) is a loop invariant:

Initially R = {s} ⊆ R(s).

Assume R ⊆ R(s) and (u, v) requires attention.

Then there is a path from s to u.

But then there also is a path from s to v.

2

Correctness 2 50

Proposition

Upon completion, R(s) ⊆ R.

Proof.

Proof is by induction on the distance k form s to v ∈ R(s).

k = 0: s ∈ R by initialization.

k > 0: Consider shortest path s = x0, x1, . . . , xk−1, xk = v.

By IH, xk−1 is placed into R at some point. But then the edge (xk−1, v)
requires attention unless v is already in R. In either case, v winds up in R.

2

Bookkeeping 51

We have to organize the order in which edges (u, v) are handled: usually
several edges will require attention, we have to select a specific one.

To this end it is best to place new nodes into a special container C (rather
than just in R): C holds all the vertices that might be the source of an edge
requiring attention.

1

2 R = C = { s };
3

4 while(C not empty)
5 u = pick in C and remove;
6 if(some edge (u,v) requires attention)
7 add v to R, C;
8

9 return R;
10

Implementation 52

R should be a bit-vector (or perhaps a hash table) so we can check in O(1)
time if an edge requires attention.

C must support constant time inserts and select-remove operations (but not
search). A stack or queue will work fine.

We can traverse the adjacency list to find all edges that might require
attention.

Theorem

The running time of the prototype algorithm is O(n+m).

Exercise

Explain the running time of the prototype algorithm more carefully.

Exploration 53

Using a stack for S we obtain a concrete exploration algorithm.

1

2 explore_graph(vertex s)
3 {
4 S.push(s);
5 put s into R; // R a set
6

7 while(S not empty) {
8 x = S.pop();
9 forall (x,y) in E do

10 if(y not in R) {
11 S.push(y);
12 put y into R;
13 }
14 }
15 }

Depth First Search (DFS) 54

One advantage of using a stack is that we can avoid implementing it explicitly:
recursion will take care of it.

1 dfs(vertex x)
2 {
3 put x into R;
4 forall (x,y) in E do
5 if(y not in R)
6 dfs(y);
7 }

Note that the additional space requirement is n+ O(n): n for the bit-vector R
and O(n) for the recursion stack.

Breadth First Search (BFS) 55

Alternatively, we can use a queue to implement the container.

1 bfs(vertex s)
2 {
3 Q.enqueue(s);
4 put s into R; // R a set
5

6 while(Q not empty) {
7 x = Q.dequeue();
8 forall (x,y) in E do
9 if(y not in R) {

10 Q.enqueue(y);
11 put y into R;
12 }
13 }
14 }

Reachable Set 56

Let G be a digraph on n vertices and m edges.

Assume that we have an adjacency list representation of the graph.

Theorem

One can compute the set of all vertices reachable from a given vertex in time
O(n+m).

Corollary

One can check whether there is a path from a given source to a given target
vertex in time O(n+m).

The running times are correct as stated, but note that the details of a run of
DFS or BFS depend very much on the order of vertices in the adjacency lists.
This little feature can make correctness proofs rather messy.

Example 57

1

2

4

3

5

7

6

8

10

9

A digraph on 10 vertices and 17 edges.

Adjacency Lists 58

To describe a run of DFS or BFS we need to fix a concrete adjacency list
representation.

1 1: 4 2 3 6: 9
2 2: 4 7: 6 9 8
3 3: 7 6 8: 10 5
4 4: 3 5 7 9: 10
5 5: 2 10: -

In this graph R(1) = [10] but the order of discovery differs in DFS and BFS.

1 vertex: 1 2 3 4 5 6 7 8 9 10
2

3 DFS: 1 10 3 2 9 5 4 8 6 7
4

5 BFS: 1 3 4 2 5 7 6 9 8 10

Example 59

1

2

4

3

5

7

6

8

10

9

R(1) = [10].

R(6) = {6, 9, 10}, R(9) = {9, 10} and R(10) = {10}.
For all other x: R(x) = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

Spanning Trees 60

Suppose G = 〈V,E 〉 is a connected ugraph. A spanning tree of G is a
subgraph T = 〈V,E′ 〉 that is connected and acyclic.

In other words, we remove edges from G until only a tree is left.

This is particularly interesting if we have a cost function π : E → R+ and we
want a spanning tree that minimizes total cost, as so-called minmimum
spanning tree.

More later.

Fullerene 61

K4 Spanning Trees 62

The DFS Tree 63

1

2

4

3

5

7

6

8

10

9

The edges receiving attention in DFS form a spanning tree (if the graph is
connected; otherwise we get a tree for each connected component). This
DFS-generated spanning tree is the starting point for many other graph
algorithms.

Grid Example 64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Suppose adjacency lists are ordered.

What DFS tree do we get if we start the search at vertex 1?

The Tree 65

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Typical DFS behavior: run off to a distant vertex, then backtrack – but run off
again at the first opportunity.

Exercises 66

Exercise

What tree would BFS produce on this grid graph?

Exercise

Characterize all the digraphs for which DFS and BFS produce the same
spanning tree.

(I once knew the answer, but I forgot.)

