GIT

Graphs

A. Ada, K. Sutner
Carnegie Mellon University

Spring 2018
(1) Minimum Spanning Trees

- Matchings
- Tutte Matrix
- Planarity

Boruvka's Problem

Suppose you need to provide electricity to a number of households. For financial reasons, only some of the houses can be connected by a wire, and the cost of building these connections varies.
What is the least cost associated with a network that connects all the households?

This problem was first tackled by Otakar Boruvka in 1926, in a proposal to construct an efficient electricity network for Bohemia.
Needless to say, he was way ahead of his time.

To model Boruvka's problem we can use a connected ugraph $G=\langle V, E\rangle$ whose vertices represent the locations and whose edges represent the potential links. Moreover, we attach a cost to each edge, a map cost : $E \rightarrow \mathbb{R}_{+}$.

We want to construct a spanning tree $T=\langle V, T\rangle$ (slight abuse of notation, but very elegant) that minimizes

$$
\operatorname{cost}(T)=\sum_{e \in T} \operatorname{cost}(e)
$$

There Are Lots ..

In general, the number of spanning trees of a graph is large.
Theorem (Cayley)
The complete graph K_{n} has n^{n-2} spanning trees.

Theorem

The complete bipartite graph $K_{n, m}$ has $n^{m-1} m^{n-1}$ spanning trees.

Since there are many potential trees, we cannot do anything resembling a brute force search.

Instead, do the biologically natural thing:

Grow the tree in stages.

We start with an empty tree, or a single node tree or some such. Then we add edges until the MST emerges. So the real question is:

How should we choose the next edge?
A fair guess would be to always pick a cheap edge.

Cheap Edges

Proposition

Let e be a minimal cost edge. Then there is a MST containing e.

Proof. Can produce a new MST be swapping edges:
$T^{\prime}=T+e-e^{\prime}$
where e^{\prime} is an edge on the cycle introduced by adding e.

This swapping trick may seem trivial, but it is actually the foundation for an important topic in combinatorics: matroids.

Growing a Forest

A spanning forest is a collection of vertex-disjoint trees $T_{i}=\left\langle V_{i}, T_{i}\right\rangle$ such that $\bigcup V_{i}=V$.

Here is the key observation regarding spanning forests. The proof is almost exactly the same as for the last proposition.

Lemma (Extension Lemma)
Let e be a minimal cost edge not introducing a cycle in a given forest.
Then there is a spanning tree containing e that has cost minimal in the class of all spanning trees containing the forest.

This opens the door for greedy algorithms: keep adding cheap edges till the tree is complete. Initially we are dealing with a trivial tree/forest, so the class of extensions consists of all spanning trees. Hence we are dealing with a bonified MST.

Think of this as an edge-coloring game: initially all edges are white. We will color edges blue (added to tree) or red (permanently barred from the tree) while maintaining the following invariant:

There is a MST containing all blue edges, but none of the red edges.

In other words, we have not made a mistake yet.
Good enough for CS.

Prim's Algorithm 1957

Sometimes called the nearest neighbor algorithm.
Works by choosing an arbitrary vertex r as a root, and the growing a tree T (non-spanning as yet) from there. Keep extending tree by single minimal cost edges until tree is spanning.

```
initialize tree T to r
while( T is not spanning )
    select cheapest edge e extending T
    add e to T
```

Blue edges: the ones chosen to extend T.
Red edges: the ones that would introduce cycles in T.

Running Time

Data structures: Need easy access to the next cheapest edge. Use a priority queue for the vertex complement of T, where the key is distance information: minimal distance to T.

Note that this looks very similar to Dijkstra's shortest path algorithm. Unsurprisingly, Dijkstra's also discovered Prim's algorithm, but in 1959.

Theorem

Using a standard priority queue, the running time of Prim's algorithm is $O(m \lg n)$.

Can be improved by Fibonacci heaps to $O(m+n \lg n)$.

Grid MST

Works by starting with a trivial spanning forest consisting of n one-point trees. Keep extending forest by adding a minimal cost edge that connects two trees in the forest.

More precisely, do the following:

```
sort edges by cost
initialize forest F to V
foreach edge e in E do // in order of cost
    if( e creates no cycle )
    add e to F, merge two trees
```

Blue edges: the ones chosen to extend the forest.
Red edges: the ones that would introduce cycles in T.

Correctness follows from the Extension Lemma.

How about efficiency?
We have to sort the list of edges according to their weights and keep them in an array which takes $O(m \lg n)$ steps. Then we traverse the array.

The question now is: how hard is it to check if an edge e connects two separate trees (or introduces a cycle in one tree).
This problem can be handled essentially in time linear in the number of queries and merges using a so-called Union/Find data structure. So we have

Theorem
The running time of Kruskal's algorithm is $O(m \lg n)$.

Demo

Greedy MST Demo

And Boruvka?

The idea behind Boruvka's algorithm is this:

- Initialize a trivial spanning forest F.
- Determine a minimal cost protruding edge for each tree in F.
- Add these edges to F, with caution.
- Repeat.

The reason this is interesting is because it parallelizes nicely: we can search for the minimal cost protruding edges in parallel for each tree in the forest.

- Minimum Spanning Trees
(2) Matchings
- Tutte Matrix
- Planarity

Notation

Let G be a simple ugraph.

- $\Gamma(x)=\{y \mid\{x, y\} \in E\}$ denotes the (open) neighborhood of $x \in V$. Similarly write $\Gamma(X)$ for $X \subseteq V$.
- Similarly write $\Gamma_{+}(x)=\Gamma \cup\{x\}$ for the closed neighborhood.

Perfect Matchings

Let $G=\langle V, E\rangle$ be a ugraph.

Definition

A matching for G is a set $M \subseteq E$ such that every node in the subgraph $\langle V, M\rangle$ has degree at most 1 .
A perfect matching for G is a set $M \subseteq E$ such that every node in the subgraph $\langle V, M\rangle$ has degree exactly 1 .

We focus on the case where G is bipartite: there is a partition of the vertex set $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, so that all edges go from V_{1} to V_{2}.

It is convenient to write $G\left[V_{1}, V_{2}\right]$ to indicate the partition of the vertex set (V_{1} is "left", V_{2} is "right").

Example

Note that a graph is bipartite iff we can 2-color its vertices.

Resource Allocation

Think of V_{1} as a collection of resources, and of V_{2} as a collection of tasks. We would like to allocate one resource to each task, ideally exhausting all resources and handling all tasks.

Of course, this can only work if $\left|V_{1}\right|=\left|V_{2}\right|$: the graph must have even cardinality and be split in the middle.

Note that a matching in a bipartite graph is essentially a partial bijection $V_{1} \longleftrightarrow V_{2}$.

A perfect matching produces an actual bijection.

Bipartite Graphs

Proposition
A graph is bipartite iff it has no odd-length cycles.

Proof. \Rightarrow is obvious, for \Leftarrow we may safely assume that the graph is connected.

Pick an anchor point v in G and color it blue.
Then color the neighbors of v red, the neighbors of these neighbors blue, and so on.

There will never be a clash: otherwise we would have an odd-length cycle.

Hall's Theorem

Since a perfect matching in a bipartite graph $G\left[V_{1}, V_{2}\right]$ is a bijection, we must have

$$
|U| \leq|\Gamma(U)|
$$

(*)
for every $U \subseteq V_{1}$.

Theorem (Hall's Theorem 1935)
A bipartite graph $G\left[V_{1}, V_{2}\right]$ has a perfect matching iff condition (*) holds for all $U \subseteq V_{1}$.

Proof I

Assume that for all $U \subsetneq V_{1}$ we have the stronger condition

$$
|U|<|\Gamma(U)|
$$

Pick an edge $e=\{u, v\}$ and let $G^{\prime}=G-u, v$.
Then $(*)$ still holds for G^{\prime} and by $\mathrm{IH} G^{\prime}$ has a perfect matching M^{\prime}.
Add e to M^{\prime} to get a perfect matching M for G.

Proof II

Assume that for some $U \subsetneq V_{1}$ we are in the critical case

$$
|U|=|\Gamma(U)|
$$

Let G^{\prime} be the subgraph $G[U, \Gamma(U)]$ and $G^{\prime \prime}$ the subgraph $G[\bar{U}, \overline{\Gamma(U)}]$.
A moment's thought shows that both G^{\prime} and $G^{\prime \prime}$ satisfy $(*)$.
By IH we have two perfect matchings M^{\prime} and $M^{\prime \prime}$ which can be combined to a perfect matching M for G.

Exercise

Think for a moment and draw some pictures.

Standard Application

Suppose you split a deck of cards into 13 piles of size 4 each. Then one can pick one card from each pile to get one card from each rank.

To see why, consider $G[[13],[13]]$ where the vertices on the left represent the 13 piles and the vertices on the right represent the 13 ranks. Place an edge if the pile contains a card of that rank.

Each vertex has degree 4, so if we pick a set U of piles on the left we have

$$
|\Gamma(U)| \geq(\text { \#edges in neighborhood }) / 4=4|U| / 4=|U|
$$

Exercise

There is a slight bug in the proof. Exterminate it.

Algorithm?

Note that the proof of Hall's theorem is perfectly constructive: it shows how to build M from smaller matchings on subgraphs.

Alas, it's exponential: we have to check the condition on arbitrary subsets $U \subsetneq V_{1}$.

That's better than doing a brute-force search over subsets of E, but not by much.

Real Question: Is there a fast algorithm to find a perfect matching (or refute its existence)?

Augmenting Paths

Suppose we have a matching M in $G\left[V_{1}, V_{2}\right]$
An alternating path is a path whose edges alternate between M and \bar{M}.
An augmenting path is an alternating path whose source and target are unmatched.

A simple trick: swap the edges along the path in and out of M. This increases the size of the matching by 1 .

So we can go on until we run out of augmenting paths.

Petersen-König-Berge Lemma

Lemma
Suppose we have a matching M in $G\left[V_{1}, V_{2}\right]$. Then there is a larger matching iff M has an augmenting path.

Proof.
First consider two arbitrary matchings M_{1} and M_{2}. Let $E^{\prime} \subseteq E$ be their symmetric difference.

Then the connected components of subgraph $G\left[V_{1}, V_{2} ; E^{\prime}\right]$ are

- isolated points
- paths
- even length cycles

To see why note that all vertices in the subgraph have degree at most 2 .

But then $\left|M_{1}\right|<\left|M_{2}\right|$ implies that at least one component must be a path.
Moreover, that path must be augmenting for M_{1}.

Note that we can find an augmenting path by a modified version of BFS.
So the total running time is $O(n m)=O\left(n^{3}\right)$. There are better algorithms, but they are considerably more complicated.

Exercise

Implement the matching algorithm for bipartite graphs.

General Graphs

One would suspect that a similar algorithm should also work for general graphs, but there are several technical problems to deal with.

J. Edmonds

Paths, Trees and Flowers
Canad. J. Math. 17 (1965), 449-467.

This paper is particularly important, since it was one of the first to introduce the idea that polynomial time is a good model for feasible computation.

Of course, Gödel thought about this 10 years earlier.

- Minimum Spanning Trees
- Matchings
(3) Tutte Matrix
- Planarity

Suppose $G=\langle[n], E\rangle$ is a ugraph. Define its Tutte matrix by

$$
T(i, j)= \begin{cases}x_{i j} & \text { if } i j \in E \text { and } i<j, \\ -x_{j i} & \text { if } i j \in E \text { and } i>j, \\ 0 & \text { otherwise. }\end{cases}
$$

The determinant of this matrix is a polynomial with up to n^{2} variables $x_{i j}$ and can be computed in polynomial time.

9 Wheel

$$
\left(\begin{array}{ccccccccc}
0 & x_{1,2} & 0 & 0 & 0 & 0 & 0 & x_{1,8} & x_{1,9} \\
-x_{1,2} & 0 & x_{2,3} & 0 & 0 & 0 & 0 & 0 & x_{2,9} \\
0 & -x_{2,3} & 0 & x_{3,4} & 0 & 0 & 0 & 0 & x_{3,9} \\
0 & 0 & -x_{3,4} & 0 & x_{4,5} & 0 & 0 & 0 & x_{4,9} \\
0 & 0 & 0 & -x_{4,5} & 0 & x_{5,6} & 0 & 0 & x_{5,9} \\
0 & 0 & 0 & 0 & -x_{5,6} & 0 & x_{6,7} & 0 & x_{6,9} \\
0 & 0 & 0 & 0 & 0 & -x_{6,7} & 0 & x_{7,8} & x_{7,9} \\
-x_{1,8} & 0 & 0 & 0 & 0 & 0 & -x_{7,8} & 0 & x_{8,9} \\
-x_{1,9} & -x_{2,9} & -x_{3,9} & -x_{4,9} & -x_{5,9} & -x_{6,9} & -x_{7,9} & -x_{8,9} & 0
\end{array}\right)
$$

This matrix has determinant 0 .

Cube Matrix

$$
\left(\begin{array}{cccccccc}
0 & x_{1,2} & x_{1,3} & 0 & x_{1,5} & 0 & 0 & 0 \\
-x_{1,2} & 0 & 0 & x_{2,4} & 0 & x_{2,6} & 0 & 0 \\
-x_{1,3} & 0 & 0 & x_{3,4} & 0 & 0 & x_{3,7} & 0 \\
0 & -x_{2,4} & -x_{3,4} & 0 & 0 & 0 & 0 & x_{4,8} \\
-x_{1,5} & 0 & 0 & 0 & 0 & x_{5,6} & x_{5,7} & 0 \\
0 & -x_{2,6} & 0 & 0 & -x_{5,6} & 0 & 0 & x_{6,8} \\
0 & 0 & -x_{3,7} & 0 & -x_{5,7} & 0 & 0 & x_{7,8} \\
0 & 0 & 0 & -x_{4,8} & 0 & -x_{6,8} & -x_{7,8} & 0
\end{array}\right)
$$

This matrix has determinant

$$
\begin{gathered}
\left(x_{1,5}\left(x_{2,4} x_{3,7} x_{6,8}+x_{2,6}\left(-x_{3,7} x_{4,8}+x_{3,4} x_{7,8}\right)\right)+x_{1,2}\left(x_{3,7} x_{4,8} x_{5,6}+\right.\right. \\
\left.\left.x_{3,4}\left(x_{5,7} x_{6,8}-x_{5,6} x_{7,8}\right)\right)+x_{1,3}\left(x_{2,6} x_{4,8} x_{5,7}+x_{2,4}\left(-x_{5,7} x_{6,8}+x_{5,6} x_{7,8}\right)\right)\right)^{2}
\end{gathered}
$$

Tutte's Theorem

Theorem (Tutte 1947)
G has a perfect matching iff its Tutte matrix has non-zero determinant.

Note that these matrices are size $n \times n$ for a graph on n points. Also, the entries are symbolic, so computing the determinant is a little tricky.

Full Disclosure: The real reason this is important is that there is a fast probabilistic zero check for multivariate polynomials (see Schwartz-Zippel Lemma).

Proof Sketch

The determinant has the form

$$
|T|=\sum_{\pi \in \mathfrak{S}_{n}} \pm \operatorname{sign}(\pi) T_{1 \pi(1)} T_{2 \pi(2)} \ldots T_{n \pi(n)}
$$

where \mathfrak{S}_{n} is the symmetric group on n points and sign the usual sign function (-1 raised to the number of inversions in the permutation).

If there is no perfect matching, then all the product terms are 0 : they all involve at least one non-edge.

On the other hand, if the graph has a perfect matching, it must have the form

$$
M=\left\{\left\{u_{i}, v_{i}\right\} \mid i \in[n / 2]\right\}
$$

Now define $\pi\left(u_{i}\right)=v_{i}$ and $\pi\left(v_{i}\right)=u_{i}$: then π is a permutation consisting only of 2 -cycles.

But then the determinant of T cannot be identically 0 , since the corresponding monomial in the sum cannot be canceled out: for another permutation to produce the same term (up to sign), it would need to be composed of the same 2 -cycles.

How Many?

The number of connected simple graphs with perfect matchings, on $2 n$ nodes:

$$
1,5,95,10297,11546911, \ldots
$$

These numbers are not particularly interesting, but the OEIS is:

- Minimum Spanning Trees
- Matchings
- Tutte Matrix
(4) Planarity

Planar Graphs

Informally, a ugraph is planar if it can be drawn in the plane so that no edges cross.

No Good

This "definition" is a disaster: it requires higher-order concepts from geometry.

Say $G=\langle V, E\rangle$ is our ugraph. For every edge $e \in E$ we want a (finite, non-self-intersecting) curve segment

$$
\ell_{e}:[0,1] \longrightarrow \mathbb{R}^{2}
$$

so that these segment overlap only at the endpoints, and only if the corresponding edges share vertices.

Remember, we are slum-dwellers, we don't understand the reals, much less planar curves.

Theorem (I. Fáry 1948)
Every planar graph admits an embedding using only straight line segments.

Line segments are rather simple objects, planarity thus comes down to just a few linear equations over the reals.

One can even insist to place the vertices on the integer grid, so there is no problem with complicated endpoints.

Still, it is far from clear how to check whether a given graph is planar.

A Cubic Graph

Various Embeddings

But How?

Just to be clear, this graph would be given by, say, an edgelist:
$1: 2,1: 3,1: 4,2: 3,2: 4,3: 5,4: 6,5: 7,5: 8,6: 9,6: 10,7: 9$, $7: 11,8: 10,8: 12,9: 13,10: 14,11: 12,11: 13,12: 14,13: 14$

One can do a little weeding out based on the following result:

Proposition
Let G be finite, planar and connected, v / e the number of vertices/edges, respectively, and $v \geq 3$. Then $e \leq 3 v-6$, and the average degree is less than 6.

Proof Sketch

Let f be the number of faces of G (including the infinite, outer face).
Recall Euler's famous formula:

$$
v-e+f=2
$$

Generically, every edges touches 2 faces, and every face touches at least three edges (but beware of degenerate cases). Hence $3 f \leq 2 e$ and our claim follows.

So planar graphs are quite sparse, but that's nowhere near enough

The following result is a small miracle, and took quite a bit of time to assemble from weaker results.

Theorem (Hopcroft, Tarjan 1974)
One can check in linear time whether a graph is planar (and construct an embedding if the answer is yes).

The idea is to start with a partial embedding, and extend it gradually to a total one.

Minors

We can generalize the notion of a subgraph as follows.

Definition

A graph H is a minor of G if it can be obtained from G by a sequence of vertex removals Remove an isolated vertex.
edge removals Remove an edge.
edge contractions Remove an edge $x y$, introduce a new vertex v and connect it to the neighbors of x, y (kill multiple edges).

This is not the most elegant description, but easy to understand.

Operations

Petersen-Tietze

Checking by hand whether a graph is minor of another is quite tedious. Try it for the Petersen and Tietze graphs.

Theorem (Kuratowski 1930, Wagner 1935)
A graph is planar iff it does not contain a K_{5} or a $K_{3,3}$ as a minor.

Robertson and Seymour showed that for fixed H one can check whether H is a minor of G in cubic time.

