
GIT

Graphs

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

1 Minimum Spanning Trees

� Matchings

� Tutte Matrix

� Planarity

Boruvka’s Problem 3

Suppose you need to provide electricity to a number of
households. For financial reasons, only some of the houses
can be connected by a wire, and the cost of building these
connections varies.
What is the least cost associated with a network that con-
nects all the households?

This problem was first tackled by Otakar Boruvka in 1926, in a proposal
to construct an efficient electricity network for Bohemia.

Needless to say, he was way ahead of his time.

MSTs 4

To model Boruvka’s problem we can use a connected ugraph G = 〈V,E〉
whose vertices represent the locations and whose edges represent the
potential links. Moreover, we attach a cost to each edge, a map
cost : E → R+ .

We want to construct a spanning tree T = 〈V, T 〉 (slight abuse of
notation, but very elegant) that minimizes

cost(T) =
∑

e∈T
cost(e)

There Are Lots . . . 5

In general, the number of spanning trees of a graph is large.

Theorem (Cayley)

The complete graph Kn has nn−2 spanning trees.

Theorem

The complete bipartite graph Kn,m has nm−1mn−1 spanning trees.

Basic Strategy 7

Since there are many potential trees, we cannot do anything resembling a
brute force search.

Instead, do the biologically natural thing:

Grow the tree in stages.

We start with an empty tree, or a single node tree or some such. Then
we add edges until the MST emerges. So the real question is:

How should we choose the next edge?

A fair guess would be to always pick a cheap edge.

Cheap Edges 8

Proposition

Let e be a minimal cost edge. Then there is a MST containing e.

Proof. Can produce a new MST be swapping edges:

T ′ = T + e− e′

where e′ is an edge on the cycle introduced by adding e. 2

This swapping trick may seem trivial, but it is actually the foundation for
an important topic in combinatorics: matroids.

Growing a Forest 9

A spanning forest is a collection of vertex-disjoint trees Ti = 〈Vi, Ti〉
such that

⋃
Vi = V .

Here is the key observation regarding spanning forests. The proof is
almost exactly the same as for the last proposition.

Lemma (Extension Lemma)

Let e be a minimal cost edge not introducing a cycle in a given forest.
Then there is a spanning tree containing e that has cost minimal in the
class of all spanning trees containing the forest.

Greedy Wins 10

This opens the door for greedy algorithms: keep adding cheap edges till
the tree is complete. Initially we are dealing with a trivial tree/forest, so
the class of extensions consists of all spanning trees. Hence we are
dealing with a bonified MST.

Think of this as an edge-coloring game: initially all edges are white. We
will color edges blue (added to tree) or red (permanently barred from the
tree) while maintaining the following invariant:

There is a MST containing all blue edges, but none of the
red edges.

In other words, we have not made a mistake yet.

Good enough for CS.

Prim’s Algorithm 1957 11

Sometimes called the nearest neighbor algorithm.

Works by choosing an arbitrary vertex r as a root, and the growing a tree
T (non-spanning as yet) from there. Keep extending tree by single
minimal cost edges until tree is spanning.

1 initialize tree T to r
2 while(T is not spanning)
3 select cheapest edge e extending T
4 add e to T

Blue edges: the ones chosen to extend T .
Red edges: the ones that would introduce cycles in T .

Running Time 12

Data structures: Need easy access to the next cheapest edge. Use a
priority queue for the vertex complement of T , where the key is distance
information: minimal distance to T .

Note that this looks very similar to Dijkstra’s shortest path algorithm.
Unsurprisingly, Dijkstra’s also discovered Prim’s algorithm, but in 1959.

Theorem

Using a standard priority queue, the running time of Prim’s algorithm is
O(m lg n).

Can be improved by Fibonacci heaps to O(m+ n lg n).

Grid 13

10

8

1

8

1

2

4

1

2

1

4

3

9

8

10

7

8

3

8

9

10

9

5

10

4

7

6

10

3

2

6

4

3

5

8

2

3

3

Grid MST 14

10

8

1

8

1

2

4

1

2

1

4

3

9

8

10

7

8

3

8

9

10

9

5

10

4

7

6

10

3

2

6

4

3

5

8

2

3

3

Kruskal’s Algorithm 1956 15

Works by starting with a trivial spanning forest consisting of n one-point
trees. Keep extending forest by adding a minimal cost edge that connects
two trees in the forest.

More precisely, do the following:

1 sort edges by cost
2 initialize forest F to V
3

4 foreach edge e in E do // in order of cost
5 if(e creates no cycle)
6 add e to F, merge two trees

Blue edges: the ones chosen to extend the forest.
Red edges: the ones that would introduce cycles in T .

Implementation 16

Correctness follows from the Extension Lemma.

How about efficiency?

We have to sort the list of edges according to their weights and keep
them in an array which takes O(m lg n) steps. Then we traverse the
array.

The question now is: how hard is it to check if an edge e connects two
separate trees (or introduces a cycle in one tree).

This problem can be handled essentially in time linear in the number of
queries and merges using a so-called Union/Find data structure. So we
have

Theorem

The running time of Kruskal’s algorithm is O(m lg n).

Demo 17

Greedy MST Demo

And Boruvka? 18

The idea behind Boruvka’s algorithm is this:

Initialize a trivial spanning forest F .

Determine a minimal cost protruding edge for each tree in F .

Add these edges to F , with caution.

Repeat.

The reason this is interesting is because it parallelizes nicely: we can
search for the minimal cost protruding edges in parallel for each tree in
the forest.

� Minimum Spanning Trees

2 Matchings

� Tutte Matrix

� Planarity

Notation 20

Let G be a simple ugraph.

Γ(x) = { y | {x, y} ∈ E } denotes the (open) neighborhood of
x ∈ V . Similarly write Γ(X) for X ⊆ V .

Similarly write Γ+(x) = Γ ∪ {x} for the closed neighborhood.

Perfect Matchings 21

Let G = 〈V,E 〉 be a ugraph.

Definition

A matching for G is a set M ⊆ E such that every node in the subgraph
〈V,M 〉 has degree at most 1.

A perfect matching for G is a set M ⊆ E such that every node in the
subgraph 〈V,M 〉 has degree exactly 1.

We focus on the case where G is bipartite: there is a partition of the
vertex set V = V1 ∪ V2, V1 ∩ V2 = ∅, so that all edges go from V1 to V2.

It is convenient to write G[V1, V2] to indicate the partition of the vertex
set (V1 is “left”, V2 is “right”).

Example 22

Note that a graph is bipartite iff we can 2-color its vertices.

Resource Allocation 23

Think of V1 as a collection of resources, and of V2 as a collection of
tasks. We would like to allocate one resource to each task, ideally
exhausting all resources and handling all tasks.

Of course, this can only work if |V1| = |V2|: the graph must have even
cardinality and be split in the middle.

Note that a matching in a bipartite graph is essentially a partial bijection
V1 ←→ V2.

A perfect matching produces an actual bijection.

All Cubical Perfect Matchings 24

A Random Perfect Matching 25

Bipartite Graphs 26

Proposition

A graph is bipartite iff it has no odd-length cycles.

Proof. ⇒ is obvious, for ⇐ we may safely assume that the graph is
connected.

Pick an anchor point v in G and color it blue.

Then color the neighbors of v red, the neighbors of these neighbors blue,
and so on.

There will never be a clash: otherwise we would have an odd-length cycle.

2

Hall’s Theorem 27

Since a perfect matching in a bipartite graph G[V1, V2] is a bijection, we
must have

|U | ≤ |Γ(U)| (∗)

for every U ⊆ V1.

Theorem (Hall’s Theorem 1935)

A bipartite graph G[V1, V2] has a perfect matching iff condition (∗) holds
for all U ⊆ V1.

Proof I 28

Assume that for all U (V1 we have the stronger condition

|U | < |Γ(U)|

Pick an edge e = {u, v} and let G′ = G− u, v.

Then (∗) still holds for G′ and by IH G′ has a perfect matching M ′.

Add e to M ′ to get a perfect matching M for G.

Proof II 29

Assume that for some U (V1 we are in the critical case

|U | = |Γ(U)|

Let G′ be the subgraph G[U,Γ(U)] and G′′ the subgraph G[U,Γ(U)].

A moment’s thought shows that both G′ and G′′ satisfy (∗).

By IH we have two perfect matchings M ′ and M ′′ which can be
combined to a perfect matching M for G.

2

Exercise

Think for a moment and draw some pictures.

Standard Application 30

Suppose you split a deck of cards into 13 piles of size 4 each. Then one
can pick one card from each pile to get one card from each rank.

To see why, consider G[[13], [13]] where the vertices on the left represent
the 13 piles and the vertices on the right represent the 13 ranks. Place
an edge if the pile contains a card of that rank.

Each vertex has degree 4, so if we pick a set U of piles on the left we have

|Γ(U)| ≥ (#edges in neighborhood)/4 = 4|U |/4 = |U |

Exercise

There is a slight bug in the proof. Exterminate it.

Algorithm? 31

Note that the proof of Hall’s theorem is perfectly constructive: it shows
how to build M from smaller matchings on subgraphs.

Alas, it’s exponential: we have to check the condition on arbitrary
subsets U (V1.

That’s better than doing a brute-force search over subsets of E, but not
by much.

Real Question: Is there a fast algorithm to find a perfect
matching (or refute its existence)?

Augmenting Paths 32

Suppose we have a matching M in G[V1, V2].

An alternating path is a path whose edges alternate between M and M .

An augmenting path is an alternating path whose source and target are
unmatched.

0 1 2 3 4 5

A simple trick: swap the edges along the path in and out of M . This
increases the size of the matching by 1.

So we can go on until we run out of augmenting paths.

Petersen-König-Berge Lemma 33

Lemma

Suppose we have a matching M in G[V1, V2]. Then there is a larger
matching iff M has an augmenting path.

Proof.

First consider two arbitrary matchings M1 and M2. Let E′ ⊆ E be their
symmetric difference.

Then the connected components of subgraph G[V1, V2;E′] are

isolated points

paths

even length cycles

To see why note that all vertices in the subgraph have degree at most 2.

But then |M1| < |M2| implies that at least one component must be a
path.

Moreover, that path must be augmenting for M1. 2

Note that we can find an augmenting path by a modified version of BFS.

So the total running time is O(nm) = O(n3). There are better
algorithms, but they are considerably more complicated.

Exercise

Implement the matching algorithm for bipartite graphs.

General Graphs 35

One would suspect that a similar algorithm should also work for general
graphs, but there are several technical problems to deal with.

J. Edmonds
Paths, Trees and Flowers
Canad. J. Math. 17 (1965), 449-467.

This paper is particularly important, since it was one of the first to
introduce the idea that polynomial time is a good model for feasible
computation.

Of course, Gödel thought about this 10 years earlier.

� Minimum Spanning Trees

� Matchings

3 Tutte Matrix

� Planarity

Tutte Matrix 37

Suppose G = 〈 [n], E 〉 is a ugraph. Define its Tutte matrix by

T (i, j) =

xij if ij ∈ E and i < j,

−xji if ij ∈ E and i > j,

0 otherwise.

The determinant of this matrix is a polynomial with up to n2 variables
xij and can be computed in polynomial time.

9 Wheel 38

Wheel Matrix 39

0 x1,2 0 0 0 0 0 x1,8 x1,9
−x1,2 0 x2,3 0 0 0 0 0 x2,9

0 −x2,3 0 x3,4 0 0 0 0 x3,9
0 0 −x3,4 0 x4,5 0 0 0 x4,9
0 0 0 −x4,5 0 x5,6 0 0 x5,9
0 0 0 0 −x5,6 0 x6,7 0 x6,9
0 0 0 0 0 −x6,7 0 x7,8 x7,9
−x1,8 0 0 0 0 0 −x7,8 0 x8,9
−x1,9 −x2,9 −x3,9 −x4,9 −x5,9 −x6,9 −x7,9 −x8,9 0

This matrix has determinant 0.

Cube 40

Cube Matrix 41

0 x1,2 x1,3 0 x1,5 0 0 0
−x1,2 0 0 x2,4 0 x2,6 0 0
−x1,3 0 0 x3,4 0 0 x3,7 0

0 −x2,4 −x3,4 0 0 0 0 x4,8
−x1,5 0 0 0 0 x5,6 x5,7 0

0 −x2,6 0 0 −x5,6 0 0 x6,8
0 0 −x3,7 0 −x5,7 0 0 x7,8
0 0 0 −x4,8 0 −x6,8 −x7,8 0

This matrix has determinant

(x1,5(x2,4x3,7x6,8 + x2,6(−x3,7x4,8 + x3,4x7,8)) + x1,2(x3,7x4,8x5,6+

x3,4(x5,7x6,8−x5,6x7,8))+x1,3(x2,6x4,8x5,7+x2,4(−x5,7x6,8+x5,6x7,8)))2

Tutte’s Theorem 42

Theorem (Tutte 1947)

G has a perfect matching iff its Tutte matrix has non-zero determinant.

Note that these matrices are size n× n for a graph on n points. Also,
the entries are symbolic, so computing the determinant is a little tricky.

Full Disclosure: The real reason this is important is that there is a fast
probabilistic zero check for multivariate polynomials (see Schwartz-Zippel
Lemma).

Proof Sketch 43

The determinant has the form

|T | =
∑

π∈Sn

± sign(π)T1π(1)T2π(2) . . . Tnπ(n)

where Sn is the symmetric group on n points and sign the usual sign
function (−1 raised to the number of inversions in the permutation).

If there is no perfect matching, then all the product terms are 0: they all
involve at least one non-edge.

On the other hand, if the graph has a perfect matching, it must have the
form

M = { {ui, vi} | i ∈ [n/2] }

Now define π(ui) = vi and π(vi) = ui: then π is a permutation
consisting only of 2-cycles.

But then the determinant of T cannot be identically 0, since the
corresponding monomial in the sum cannot be canceled out: for another
permutation to produce the same term (up to sign), it would need to be
composed of the same 2-cycles.

2

How Many? 45

The number of connected simple graphs with perfect matchings, on 2n
nodes:

1, 5, 95, 10297, 11546911, . . .

These numbers are not particularly interesting, but the OEIS is:

http://oeis.org/A218463

� Minimum Spanning Trees

� Matchings

� Tutte Matrix

4 Planarity

Planar Graphs 47

Informally, a ugraph is planar if it can be drawn in the plane so that no
edges cross.

No Good 48

This “definition” is a disaster: it requires higher-order concepts from
geometry.

Say G = 〈V,E 〉 is our ugraph. For every edge e ∈ E we want a (finite,
non-self-intersecting) curve segment

`e : [0, 1] −→ R2

so that these segment overlap only at the endpoints, and only if the
corresponding edges share vertices.

Remember, we are slum-dwellers, we don’t understand the reals, much
less planar curves.

Simplification 49

Theorem (I. Fáry 1948)

Every planar graph admits an embedding using only straight line
segments.

Line segments are rather simple objects, planarity thus comes down to
just a few linear equations over the reals.

One can even insist to place the vertices on the integer grid, so there is
no problem with complicated endpoints.

Still, it is far from clear how to check whether a given graph is planar.

A Cubic Graph 50

Various Embeddings 51

A Planar Embedding 52

But How? 53

Just to be clear, this graph would be given by, say, an edgelist:

1 : 2, 1 : 3, 1 : 4, 2 : 3, 2 : 4, 3 : 5, 4 : 6, 5 : 7, 5 : 8, 6 : 9, 6 : 10, 7 : 9,

7 : 11, 8 : 10, 8 : 12, 9 : 13, 10 : 14, 11 : 12, 11 : 13, 12 : 14, 13 : 14

One can do a little weeding out based on the following result:

Proposition

Let G be finite, planar and connected, v/e the number of vertices/edges,
respectively, and v ≥ 3. Then e ≤ 3v − 6, and the average degree is less
than 6.

Proof Sketch 54

Let f be the number of faces of G (including the infinite, outer face).

Recall Euler’s famous formula:

v − e+ f = 2

Generically, every edges touches 2 faces, and every face touches at least
three edges (but beware of degenerate cases). Hence 3f ≤ 2e and our
claim follows.

So planar graphs are quite sparse, but that’s nowhere near enough.

Linear Planarity Testing 55

The following result is a small miracle, and took quite a bit of time to
assemble from weaker results.

Theorem (Hopcroft, Tarjan 1974)

One can check in linear time whether a graph is planar (and construct an
embedding if the answer is yes).

The idea is to start with a partial embedding, and extend it gradually to
a total one.

Minors 56

We can generalize the notion of a subgraph as follows.

Definition

A graph H is a minor of G if it can be obtained from G by a sequence of

vertex removals Remove an isolated vertex.

edge removals Remove an edge.

edge contractions Remove an edge xy, introduce a new vertex v and
connect it to the neighbors of x, y (kill multiple edges).

This is not the most elegant description, but easy to understand.

Edge Contraction 57

x ye

vxy

Star and Target 58

Operations 59

Petersen-Tietze 60

Checking by hand whether a graph is minor of another is quite tedious.
Try it for the Petersen and Tietze graphs.

A Weird Planarity Test 61

Theorem (Kuratowski 1930, Wagner 1935)

A graph is planar iff it does not contain a K5 or a K3,3 as a minor.

Robertson and Seymour showed that for fixed H one can check whether
H is a minor of G in cubic time.

