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What is P ?

P

The theoretical divide between efficient and inefficient:

Why P ?

-  Poly-time is not meant to mean “efficient in practice”.

-  Poly-time:  extraordinarily better than brute force search.

-  Poly-time:  mathematical insight into problem’s structure.

-  Robust to notion of what is an 
     elementary step,     what model we use, 
     reasonable encoding of input,     implementation details.

-  Nice closure property:  Plug in a poly-time alg. into 
   another poly-time alg. —> poly-time



Why P ?

   Summary: 

What is NP ?
EXP

NP :EXP

P

NP

DECIDABLE  LANGUAGES

What is NP ?

P
?
= NP

asks whether these two sets are equal.
P

NP

How would you show              ?P = NP

How would you show              ?P 6= NP



Boolean circuits are related to the P vs NP question
in multiple ways.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?
- It is a computational model for computing
  decision problems (or computational problems).

-

We already have TMs.  Why Boolean circuits?

-

-

- Circuits are good models to study parallel computation.

- Real computers are built with digital circuits.



Dividing a problem according to length of input

L ✓ {0, 1}⇤

⌃ = {0, 1}

f : {0, 1}⇤ ! {0, 1}

Dividing a problem according to length of input

A TM is a finite object (finite number of states)
but can handle any input length.

Imagine a model where we allow the TM to change
with input length.

input outputTM

computes L

TM0

L0

TM1

L1

TM2

L2

TM3
L3

… 
… 

Dividing a problem according to length of input

So one machine does not compute    .L

You use a family of machines:

(M0,M1,M2, . . .)

Is this a reasonable/realistic model of computation?!?

(Imagine having a different Python function for each input length.)

Boolean circuits work this way.
Need a separate circuit for each input length.
(but we still love them)



Boolean Circuit Definition

Picture of a circuit
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Poll 1:  What does this circuit compute ?
(sometimes circuits are drawn upside down)
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How does a circuit decide a language?

How do we measure the complexity of a circuit?

Given                                ,  write

How can a circuit compute a language?

A circuit family     isC

f : {0, 1}⇤ ! {0, 1}

Construct a circuit for each input length.

C C C C0 1 2 3 … 

f0 f1 f2 f3

f = (f0, f1, f2, . . .) fn : {0, 1}n ! {0, 1}where



How can a circuit decide a language?

Circuit size and complexity

Definition (size of a circuit):

Definition (circuit complexity):

Definition (size of a circuit family):

Circuits vs TMs



Intrinsic complexity

best alg. that solves L ⇥(n2)

algs. with complexity
better than          .⇥(n2)

Time complexity

algs. with complexity
worse than          .⇥(n2)

nothing here solves L.

some algs. here solve L.

Poll 2

Let                                 be the parity decision problem.f : {0, 1}⇤ ! {0, 1}

f(x) = x1 � · · ·� xn

(where n = |x|)

What is the circuit complexity of this function?

f(x) = x1 + . . .+ xn mod 2

Poll 2
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The Big Picture Regarding Boolean Circuits

The big picture

Theorem 1:

Computability with respect to circuits

A universal exponential upper bound for all decision problems.

(We know this is not true in the TM model.)

The big picture

Limits of efficient computability 
with respect to circuits

Theorem 2 (Shannon’s Theorem):



The big picture

Circuits can efficiently “simulate” TMs

Theorem 3:

poly-time TM           poly-size circuits=)

Consequence of  Theorem 3

P

NP
h

To show              : P 6= NP

Find     in NP whose circuit complexity 
is

h
more than any nk.

poly-time TM           poly-size circuits=)
no poly-size circuits           no poly-time TM=)

Consequence of  Theorem 3

So we can just work with circuits instead

This is awesome in 2 ways:

Circuits:  clean and simple definition of computation.

“Just” a composition of  AND ,  OR ,  NOT  gates.
1.

2. Restrict the circuit.

Make it less powerful.

e.g.  (i) restrict depth

      (ii) restrict types of gates



Informal Poll

How many different functions f : {0, 1}n ! {0, 1}
are there?

-

-

-

-

n

n2

2n

22
n

-   none of the above

-   beats me

- 2n

Proof of Theorem 2

Theorem 2:  Some functions are hard

Proof:

          .

Theorem: There exists a decision problem such that

any circuit family computing it must have size at least

2n/5n



Theorem 2:  Some functions are hard

Proof (continued):

Theorem 2:  Some functions are hard

Proof (continued):

Theorem 2:  Some functions are hard

In fact, it is easy to show that almost all functions 
require exponential size circuits.

A non-constructive argument.

That was due to Claude Shannon (1949).

Claude Shannon
(1916 - 2001)

Father of  Information Theory.



Concluding Remarks

Boolean circuits:  another model of computation.
(arguably simpler definition, easier to reason about)

(can attack P vs NP problem with circuits)

no poly-size circuits           no poly-time TM=)

CIRCUIT-SAT decision problem:
Given as input the description of a circuit, 
output True if the circuit is “satisfiable”.

Whether CIRCUIT-SAT is in P or not 
is intimately related to the P vs NP question!


