

vvnat IS P ?
Ρ
The theoretical divide between efficient and inefficient:

Why P ?
- Poly-time is not meant to mean "efficient in practice".
- Poly-time: extraordinarily better than brute force search.
- Poly-time: mathematical insight into problem's structure.
- Robust to notion of what is an elementary step, what model we use, reasonable encoding of input, implementation details.
 Nice closure property: Plug in a poly-time alg. into another poly-time alg. —> poly-time

	Why P ?	
Summary:		

What is NP ?	
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
How would you show $P = NP$?	
How would you show $P \neq NP$?	

- Real computers are built with digital circuits.

Dividing a problem according to length of input		
	$\Sigma = \{0, 1\}$	
	$L \subseteq \{0,1\}^*$	$f: \{0,1\}^* \to \{0,1\}$

Dividing a problem according to length of input So one machine does not compute L. You use a family of machines: $(M_0, M_1, M_2, ...)$ (Imagine having a different Python function for each input length.) Is this a reasonable/realistic model of computation?!? Boolean circuits work this way. Need a separate circuit for each input length. (but we still love them)

	How can a circuit decide a language?	
\bigcap		

Poll 2
Let $f: \{0,1\}^* \rightarrow \{0,1\}$ be the parity decision problem.
$f(x) = x_1 + \ldots + x_n \mod 2$ (where $n = x $) $f(x) = x_1 \oplus \cdots \oplus x_n$
What is the circuit complexity of this function?

The big picture

Limits of efficient computability with respect to circuits

Theorem 2 (Shannon's Theorem):

To show $P \neq NP$: Find h in NP whose circuit complexity is more than any n^k.

Informal Poll
How many different functions $f: \{0,1\}^n \rightarrow \{0,1\}$ are there?
$ \begin{array}{c} -n \\ -2n \\ -n^2 \end{array} $
-2^{n} $-2^{2^{n}}$
none of the abovebeats me

Proof of Theorem 2

Theorem 2: Some functions are hard

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^n/5n$.

Proof:

Theorem 2: Some functions are hard	
Proof (continued):	

Theorem 2: Some functions are hard	
Proof (continued):	

Theorem 2: Some functions are hard

That was due to Claude Shannon (1949).

Father of Information Theory.

Claude Shannon (1916 - 2001)

A non-constructive argument.

In fact, it is easy to show that **almost all** functions require exponential size circuits.

Concluding Remarks

Boolean circuits: another model of computation. (arguably simpler definition, easier to reason about)

no poly-size circuits \implies no poly-time TM (can attack P vs NP problem with circuits)

CIRCUIT-SAT decision problem: Given as input the description of a circuit, output True if the circuit is "satisfiable".

Whether CIRCUIT-SAT is in P or not is intimately related to the P vs NP question!