
March 6th, 2018

15-251
Great Ideas in

Theoretical Computer Science
Lecture 15:

Boolean Circuits

What is P ?

P

The theoretical divide between efficient and inefficient:

Why P ?

- Poly-time is not meant to mean “efficient in practice”.

- Poly-time: extraordinarily better than brute force search.

- Poly-time: mathematical insight into problem’s structure.

- Robust to notion of what is an
 elementary step, what model we use,
 reasonable encoding of input, implementation details.

- Nice closure property: Plug in a poly-time alg. into
 another poly-time alg. —> poly-time

Why P ?

 Summary:

What is NP ?
EXP

NP :EXP

P

NP

DECIDABLE LANGUAGES

What is NP ?

P
?
= NP

asks whether these two sets are equal.
P

NP

How would you show ?P = NP

How would you show ?P 6= NP

Boolean circuits are related to the P vs NP question
in multiple ways.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?
- It is a computational model for computing
 decision problems (or computational problems).

-

We already have TMs. Why Boolean circuits?

-

-

- Circuits are good models to study parallel computation.

- Real computers are built with digital circuits.

Dividing a problem according to length of input

L ✓ {0, 1}⇤

⌃ = {0, 1}

f : {0, 1}⇤ ! {0, 1}

Dividing a problem according to length of input

A TM is a finite object (finite number of states)
but can handle any input length.

Imagine a model where we allow the TM to change
with input length.

input outputTM

computes L

TM0

L0

TM1

L1

TM2

L2

TM3
L3

…
…

Dividing a problem according to length of input

So one machine does not compute .L

You use a family of machines:

(M0,M1,M2, . . .)

Is this a reasonable/realistic model of computation?!?

(Imagine having a different Python function for each input length.)

Boolean circuits work this way.
Need a separate circuit for each input length.
(but we still love them)

Boolean Circuit Definition

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

Picture of a circuit

x2 x3 xnx1 …

_

¬

^^

¬ _

Poll 1: What does this circuit compute ?
(sometimes circuits are drawn upside down)

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

How does a circuit decide a language?

How do we measure the complexity of a circuit?

Given , write

How can a circuit compute a language?

A circuit family isC

f : {0, 1}⇤ ! {0, 1}

Construct a circuit for each input length.

C C C C0 1 2 3 …

f0 f1 f2 f3

f = (f0, f1, f2, . . .) fn : {0, 1}n ! {0, 1}where

How can a circuit decide a language?

Circuit size and complexity

Definition (size of a circuit):

Definition (circuit complexity):

Definition (size of a circuit family):

Circuits vs TMs

Intrinsic complexity

best alg. that solves L ⇥(n2)

algs. with complexity
better than .⇥(n2)

Time complexity

algs. with complexity
worse than .⇥(n2)

nothing here solves L.

some algs. here solve L.

Poll 2

Let be the parity decision problem.f : {0, 1}⇤ ! {0, 1}

f(x) = x1 � · · ·� xn

(where n = |x|)

What is the circuit complexity of this function?

f(x) = x1 + . . .+ xn mod 2

Poll 2

¬ ¬ ¬

¬¬

¬

^ ^ ^ ^

^^

_ _

_

The Big Picture Regarding Boolean Circuits

The big picture

Theorem 1:

Computability with respect to circuits

A universal exponential upper bound for all decision problems.

(We know this is not true in the TM model.)

The big picture

Limits of efficient computability
with respect to circuits

Theorem 2 (Shannon’s Theorem):

The big picture

Circuits can efficiently “simulate” TMs

Theorem 3:

poly-time TM poly-size circuits=)

Consequence of Theorem 3

P

NP
h

To show : P 6= NP

Find in NP whose circuit complexity
is

h
more than any nk.

poly-time TM poly-size circuits=)
no poly-size circuits no poly-time TM=)

Consequence of Theorem 3

So we can just work with circuits instead

This is awesome in 2 ways:

Circuits: clean and simple definition of computation.

“Just” a composition of AND , OR , NOT gates.
1.

2. Restrict the circuit.

Make it less powerful.

e.g. (i) restrict depth

 (ii) restrict types of gates

Informal Poll

How many different functions f : {0, 1}n ! {0, 1}
are there?

-

-

-

-

n

n2

2n

22
n

- none of the above

- beats me

- 2n

Proof of Theorem 2

Theorem 2: Some functions are hard

Proof:

 .

Theorem: There exists a decision problem such that

any circuit family computing it must have size at least

2n/5n

Theorem 2: Some functions are hard

Proof (continued):

Theorem 2: Some functions are hard

Proof (continued):

Theorem 2: Some functions are hard

In fact, it is easy to show that almost all functions
require exponential size circuits.

A non-constructive argument.

That was due to Claude Shannon (1949).

Claude Shannon
(1916 - 2001)

Father of Information Theory.

Concluding Remarks

Boolean circuits: another model of computation.
(arguably simpler definition, easier to reason about)

(can attack P vs NP problem with circuits)

no poly-size circuits no poly-time TM=)

CIRCUIT-SAT decision problem:
Given as input the description of a circuit,
output True if the circuit is “satisfiable”.

Whether CIRCUIT-SAT is in P or not
is intimately related to the P vs NP question!

