

In our quest to understand efficient computation, we come across:	
P vs NP problem	
Biggest open problem in all of Computer Science. One of the biggest open problems in all of Mathematics.	

So what is the P vs NP question? The P vs NP question is the following:

An important goal for a computer scientist
Identifying and dealing with intractable problems
After decades of research and billions of dollars of funding, no poly-time algs for:
Subset Sum, SAT, Theorem Proving, TSP, Sudoku,
Can we <u>prove</u> there is no poly-time alg?

	ł		
	Go	bal	
1	1	1	

Revisiting reduction	ns
A central concept for comparing the "dif differs bas	ficulty" of problems.
Right now we are interested in poly-time not poly	e decidability vs y-time decidability
Want to define: $A \le B$ (<i>B</i> is at w.r.t. po	east as hard as A ly-time decidability.)

Revisiting reductions	

Revisiting reductions

Example

A:

Given a graph and an integer k, does there exist at least k pairs of vertices connected to each other? (by a path)

B:

Given a graph and a pair of vertices (s,t), is s and t connected?

Revisiting reductions

The 2 sides of reductions

1. Expand the landscape of tractable problems.

Revisiting reductions

The 2 sides of reductions

2. Expand the landscape of intractable problems.

Definition of C -hard	

Definition of C -complete	

Definitions of C -hard and C -complete	
Observation:	-
Suppose A is C-complete.	
2 possible worlds	••

Finding the right complexity class C
<u>Try I:</u>
T m/ 2.
<u>1ry 2:</u>

A complexity class for BFS?
What would be a reasonable definition for: "class of problems decidable using BFS" ?
What is common about SAT, Theorem Proving, TSP, Sudoku, etc?

The complexity class NP	
Informally:	

Poll: Test your intuition	
Which of these are in NP ?	
- Subset Sum	
- TSP	
- SAT	
- Circuit-SAT	
- Sudoku	
- HALTS	
$- \{ 0^{\kappa} 1^{\kappa} : k \in \mathbb{N} \}$	

Formal definition of NP	

Examples of languages in NP	
CLIQUE Input : $\langle G, c \rangle$ where G is a graph and c is a positive int. Output : Yes iff C contains a clique of size a	
Fact: Clique is in NP.	

	Examples of languages in NP	
Proof:	We need to show a verifier TM V exists as specified in the definition of NP .	
def V	(x,u) :	

Examples of languages in NP
Proof (continued): Need to show:
1.
2.
3.

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

Karp's 21 NP-complete problems

Partition

Knapsack

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT

Steiner Tree **3-Dimensional Matching** Job Sequencing Max Cut Chromatic Number

Some other "interesting" examples

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris

Given a sequence of Tetris pieces, and a number k, can you clear more than k lines?

The P vs NP Question

The two possible v	vorlds	

What do experts think?
Two polls from 2002 and 2012 # respondents in 2002 : 100 # respondents in 2012 : 152
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

What does NP stand for anyway?	

Next 2 Lectures	
How did Cook-Levin show SAT is NP -complete?	
How do you show other problems are NP -complete?	