
March 8th, 2018

15-251 
Great Ideas in 

Theoretical Computer Science 
Lecture 16:

NP and NP-completeness 1

The chasm between poly-time and exp-time.

poly-time solvable
best we can say:

exp-time solvable

matrix 
multiplication

MST

max matching
shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…

Exponential running time examples

Subset Sum Problem

Theorem Proving Problem

Traveling Salesperon Problem (TSP)

Satisfiability Problem (SAT)

Circuit Satisfiability Problem (Circuit-SAT)

Sudoku Problem



In our quest to understand efficient computation,
we come across:

Biggest open problem in all of Computer Science.

One of the biggest open problems in all of Mathematics.

P vs NP  problem

So what is the P vs NP question?

The P vs NP question is the following:

An important goal for a computer scientist

Can we prove there is no poly-time alg?

After decades of research and billions of dollars of funding, 
no poly-time algs for:

Subset Sum, SAT,  Theorem Proving,  TSP,  Sudoku, … 

Identifying and dealing with intractable problems



Goal

Revisiting reductions

A central concept for comparing the “difficulty” of problems.

differs based on context

Right now we are interested in poly-time decidability vs
                                              not poly-time decidability 

Want to define: (    is at least as hard as     A  B
 w.r.t. poly-time decidability.)

AB

Revisiting reductions



Revisiting reductions

Given a graph and a pair of vertices (s,t),
is s and t connected?

A:

B:

Example

Given a graph and an integer k, does there exist at least 
k pairs of vertices connected to each other?

(by a path)

Revisiting reductions

1. Expand the landscape of  tractable problems.

The 2 sides of reductions

Revisiting reductions

2. Expand the landscape of  intractable problems.

The 2 sides of reductions



Gathering evidence for intractability

If we can show                for many L P
T A L

including some that we 
think should not be in P  

then that would be good evidence that           . A 62 P

Definition of C-hard

Definition of C-complete



Definitions of C-hard and C-complete

Observation:

2 possible worlds

Suppose      is C-complete.A

Recall the goal

So what is a good choice for C ?
(if we want to show  SAT,  Theorem Proving,  TSP, … are C-complete?)

Good evidence for         P :
-      is C-complete for a really rich/large set CA
   ( a set C such that we believe C ≠ P )

A 62

Main Goal Reduces to:



Finding the right complexity class C

Try 1:

Try 2:

A complexity class for BFS?

What would be a reasonable definition for: 
           “class of problems decidable using BFS” ?

What is common about 
SAT,  Theorem Proving,  TSP,  Sudoku,  etc…?

The complexity class NP
Informally:



Poll:  Test your intuition

- Subset Sum

-

- TSP

- SAT

- Circuit-SAT

- Sudoku

Which of these are in NP?

{0k1k : k 2 N}

- HALTS

Formal definition of NP

Examples of languages in NP

CLIQUE

Input:            where G is a graph and c is a positive int.

Output:  Yes iff G contains a clique of size c.

Fact:  CLIQUE is in NP.

hG, ci



Examples of languages in NP
Proof: We need to show a verifier TM      exists

as specified in the definition of NP.
V

V (x, u) :def

Examples of languages in NP
Proof (continued): 
Need to show:

1.  

2.    

3.     

Examples of languages in NP
Proof (continued): 
Need to show:

1.  if        CLIQUE,  there is some proof     (of poly-length)x 2
that makes       ACCEPT.

u

V



Examples of languages in NP
Proof (continued): 
Need to show:

2.  if         CLIQUE,  no matter what     is,       REJECTS.     u Vx 62

The complexity class NP
2 Observations:

 2.  This is a big class!

1.  Every decision problem in NP can be solved using BFS.

People expect NP contains much more than P.

NP-complete
NP

P

Contains everything in P.

Coming back to our main goal

Could it be true that one of 
      SAT,  Theorem Proving,  TSP,  Sudoku,  etc.
is NP-complete? 

Is there any language that is NP-complete??



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

Karp’s 21 NP-complete problems

1972:  “Reducibility Among Combinatorial Problems”

0-1 Integer Programming

Clique

Set Packing

Vertex Cover

Set Covering
Feedback Node Set

Feedback Arc Set

Directed Hamiltonian Cycle

Undirected Hamiltonian Cycle

3SAT Chromatic Number

Partition

Clique Cover

Exact Cover

Hitting Set

Knapsack
Steiner Tree

3-Dimensional Matching

Job Sequencing

Max Cut

Some other “interesting” examples

Tetris
Given a sequence of Tetris pieces, and a number k,
can you clear more than k lines?

Super Mario Bros
Given a Super Mario Bros level, is it completable?



How do you show a language is NP-complete?

How did Cook and Levin do it ?!?

IMPORTANT NOTE:

NP
P

T SAT

P

How did Karp do it ?!?

How do you show a language is NP-complete?

It is similar to showing undecidability.

- need an initial direct proof that a language
  is NP-hard.    (Cook-Levin Theorem)

- to show other languages are NP-hard,
  use poly-time reductions.

These are the topics of next 2 lectures.

The P vs NP Question



Good evidence for intractability?

If       is  NP-hard,  
that seems to be good evidence that            … 

A

if you believe P ≠ NP 

But is P ≠ NP???

A 62 P

The two possible worlds

What do experts think?

Two polls from 2002 and 2012
# respondents in 2002:   100

# respondents in 2012:   152



What does NP stand for anyway?

Next 2 Lectures

How did Cook-Levin show SAT is NP-complete?

How do you show other problems are NP-complete?


