
GTI

Cook-Levin Theorem

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

1 Complexity

� Cook-Levin

Our World 3

n

n2

n3

...

linear

quadratic

P(Σ∗)

cubic

EXP1

EXP2

...

EXP

P

“Intermediate” Problems 4

The picture on the last slide is quite useful, but there are a few annoying
decision problems that don’t seem to quite fit.

Problem: Vertex Cover (VC)
Instance: A ugraph G, a bound β.
Question: Does G have a vertex cover of size β?

VC can easily be handled in exponential time (just check all subsets of V
of size β), but no polynomial time algorithm is known to date (March
2018).

On the other hand, given a set C ⊆ V it is trivial to verify in polynomial
time that C is a vertex cover of size β.

This is very similar to the difference between finding a (short) proof and
verifying its correctness.

A Symmetric VC 5

A Random VC 6

Recall: NP 7

There are thousands of problems just like Vertex Cover: it is easy to
check in polynomial time that a purported solution (a witness or
certificate) is in fact correct, but finding one seems to require some kind
of exponential search.

This behavior is enshrined in the complexity class NP for
nondeterministic polynomial time.

To show that a problem L in in NP we need to find a polynomial time
decidable predicate P such that

x ∈ L ⇐⇒ ∃w (|w| ≤ p(|x|) ∧ P (x,w))

where p is some polynomial.

Déjà Vu All Over Again 8

This should look eminently familiar by now:

L is semidecidable iff there is a decidable predicate P such that

x ∈ L ⇐⇒ ∃wP (x,w)

The recursion theorists from the 1930s would have been quite
comfortable with NP (except perhaps to question its very purpose).

Unfortunately, it seems that classical methods from computability theory
have no impact on the P vs. NP question.

Reductions 9

One classical way to compare the difficulty of semidecidable sets is to use
reductions: a problem B is harder than A if B can be used to solve A.

Turing Reduction A ≤T B: B is available as an oracle in a decision
algorithm for A.

Many-One Reduction A ≤m B: there is a computable function f such
that

x ∈ A ⇐⇒ f(x) ∈ B

Lemma

Every semidecidable set is many-one reducible to the Halting Set.

Polynomial Time Reductions 10

Needless to say, these scale down into the world of complexity classes: we
just add polynomial time bounds.

Cook Reduction polynomial time Turing reduction A ≤pT B: B is
available as an oracle in a polynomial time decision
algorithm for A.

Karp Reduction polynomial time (many-one) reduction A ≤pm B: there
is a polynomial time computable function f such that

x ∈ A ⇐⇒ f(x) ∈ B

Everything Works 11

Proposition

Both ≤pT and ≤pm are pre-orders (reflexive and transitive).

But Cook reductions are a bit too powerful for NP: clearly X ≤pT X, so
we may have A ≤pT B and B ∈ NP, but A /∈ NP.

There is no such problem for Karp reductions:

Proposition

A ≤pT B and B ∈ NP implies A ∈ NP.

Of course, Karp reductions are sometimes a bit harder to find.

Hardness and Completeness 12

Definition

B is NP-hard if for all A in NP: A ≤pm B.

B is NP-complete if B is in NP and is also NP-hard.

The existence of an NP-hard set is trivial: just take the disjoint union of
all members of NP.

A = {x# e | x ∈ Le }
where (Le)e is any enumeration (not necessarily even effective) of all NP
languages.

Alas, the existence of NP-complete sets is far from obvious.

Pinpointing NP 13

Proposition

If A in NP-complete and A is in P, then P = NP.

If indeed P 6= NP as expected, then no NP-complete problem can have a
polynomial time algorithm.

This is the weak lower bound result that we are after: once a problem is
known to by NP-complete, one should be very reluctant to search for a
polynomial time algorithm.

Constructing an NP-complete Problem 14

How on earth do we get our hands on an NP-complete problem?

Given the analogy between semidecidable/decidable and
NP/P it is rather tempting to try to scale down the Halting
Set (by adding polynomial time bounds).

OK as a battle-plan, but how exactly would this work?

We would want to use some universal machine U that can simulate all
polynomial time verifiers, given by some suitable enumeration (Ne).

This requires the use of clocks (Ne runs in time O(ne + e)) and some
skulduggery to deal with witnesses (Ne magically guesses a witness, then
verifies that there is no cheating). We will skip over the details.

Failure 15

A first shot would be to define

K = { e#x | x accepted by Ne }

It is easy to see that K is NP-hard, but there is no reason why it should
be in NP; simulation of Ne is not a task that can be handled within a
fixed polynomial time bound (U itself is not polynomial time).

So a simple head-on universality argument fails here.

This is more than slightly ironic: no bounds (classical recursion theory)
really is much easier than polynomial bounds (complexity theory).

The slum is striking back.

An Ugly Set 16

We can fix the problem by padding the input so that we can compensate
for the running time of Ne.

K = { e#x# 1t | x accepted by Ne in ≤ t = |x|e + e steps }

Proposition

K is in NP.

Proof.

To see this note that the slowdown in the simulation of Ne by U is
polynomial, say, the simulation takes q(ne + e) steps.

But then U can test, in time polynomial in |e#x#1t| = |x|+ t+ c,
whether Ne indeed accepts x.

2

Hardness 17

Proposition

K is NP-hard.

Proof.

Consider A = L(Ne) ∈ NP arbitrary. Then the function

x 7→ e#x# 1|x|
e+|e|

is polynomial time computable and shows that A ≤pm K.

2

Hence, K is indeed NP-complete.

This Sucks 18

So we have the desired existence theorem.

Theorem

There is an NP-complete language.

Alas, this result is perfectly useless when it comes to our list of NP
problems: they bear no resemblance whatsoever to K.

We have a foothold in the world of NP-completeness, but to show that
one of these natural problems is NP-complete we would have to find a
reduction from K to, say, Vertex Cover.

Good luck on that.

� Complexity

2 Cook-Levin

A Better Mousetrap 20

We would like a “natural” NP-complete decision problem: some concrete
combinatorial problem (like Vertex Cover) that does not depend on
obscure diagonalization tricks.

Where should one look for such a difficult problem?

Remember Hilbert’s dream: a general algorithm to solve the
Entscheidungsproblem and answer all questions in mathematics?

Hilbert’s Entscheidungsproblem 21

The Entscheidungsproblem is solved when one knows a
procedure by which one can decide in a finite number of
operations whether a given logical expression is generally valid
or is satisfiable. The solution of the Entscheidungsproblem is of
fundamental importance for the theory of all fields, the
theorems of which are at all capable of logical development
from finitely many axioms.

D. Hilbert, W. Ackermann
Grundzüge der theoretischen Logik, 1928

The Mother of All Problems 22

Instead of asking a single, concrete question (like: is there are vertex
cover of some size), the Entscheidungsproblem asks all possible question
in a certain domain (all theorems in graph theory).

Clearly this will be a major source of computational difficulty. In fact, in
its full form, the Entscheidungsproblem is highly undecidable.

So, we need to scale it down a bit, so it winds up in NP, but still
maintains the flavor of “all possible questions.”

The Key Problems 23

Problem: Satisfiability
Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Problem: Tautology
Instance: A Boolean formula ϕ.
Question: Is ϕ a tautology?

SAT is clearly in NP, TAUT in co-NP.

Connections 24

Proposition

ϕ is satisfiable iff ¬ϕ is not a tautology.

So a polynomial time algorithm for one would produce a polynomial time
algorithm for the other (a Cook reduction).

But note that there is no obvious reason why Tautology should yield to
the “guess-and-verify” approach that works so nicely for Satisfiability:
what on earth should one guess?

Propositional Logic 25

Hilbert had first-order logic in mind when he talked about the
Entscheidungsproblem: a system powerful enough to describe large
fragments of mathematics (and currently the standard workhorse for
proofs, the accepted standard for precision).

SAT scales all the way back to propositional logic, a much, much weaker
system that is nowhere near expressive enough for most of mathematics.
All we have is Boolean constants 0 and 1, Boolean variables and
connectives ¬, ∧ and ∨.

Still, a propositional formula with, say, 10,000 variables can express
rather complicated assertions. Size matters.

And Circuits? 26

Boolean formulae are more or less the same as a circuits: the parse tree
of a formula is essentially a circuit.

The inputs in a circuit correspond to the variables in a formula.

The output of a circuit corresponds to the value of the formula (given as
input values for all the variables).

Recall DMP: 8 Queens 27

For example, it is not hard to concoct a formula

Φ(x1,1, x1,2, . . . , x8,8)

with 64 variables that expresses the assertion: we have an admissible
placement of 8 queens on a chess board (xi,j is true iff there is a queen
in position (i, j)).

Exercise

Build such a formula for an n× n chessboard and analyze its size.

Example: Vertex Cover 28

As another example, let us try to express the Vertex Cover problem as a
SAT problem.

We have a ugraph G = 〈V,E 〉 and a bound β ≤ n = |V |.
Assume for simplicity that V = [n] and β < n.

We use Boolean variables (a bitvector if you like) x = x1, x2, . . . , xn with
the intended interpretation: xi is true iff i ∈ C.

We construct a formula

Φ(G, β) = Φ1 ∧ Φ2

where

Φ1 makes sure that C really is a vertex cover, and

Φ2 makes sure that C has size at most β.

The Formulae 29

The first part is easy:

Φ1(x) =
∧

{i,j}∈E

xi ∨ xj

For the second part we need a formula that says

Φ2(x) = at most β variables xi are true

Unfortunately, the brute-force construction will produce a formula of
exponential size:

Φ2(x) = ¬
∨
i

(xi1 ∧ xi2 ∧ . . . ∧ xiβ+1
)

Faking Addition 30

To avoid exponential blow-up we use additional variables tij , 1 ≤ i, j ≤ n,
to count the number of true x variables. Then Φ2 has the form

∧
j>1

¬t1j ∧
∧
i

ti1 =
∨
k≤i

xk

∧
∧
i,j>1

(tij = (xi ∧ ti−1,j−1 ∧ ¬ti−1,j) ∨ ti−1,j)∧

¬tn,β+1

WTF? 31

Yup, this is plain dynamic programming.

The t-variables for n = 6 and C = {2, 4, 5}.
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

Make sure to trace the entries from the Boolean expression on the last
slide.

In general, show by induction that

tij = 1 ⇐⇒ #(k ≤ i | xk = 1) ≥ j

Done 32

Given the claim, ¬tn,β+1 means that C contains at most β elements.

It is straightforward to see that Φ can be constructed from G and β in
polynomial time: in essence, it suffices to note that Φ has size polynomial
in n.

Lastly, by construction Φ is satisfiable iff G has a vertex cover of size β,
so we have established a polynomial time reduction from VC to SAT.

This is not entirely frivolous, there are excellent SAT solvers, and it is
tempting to apply them to other problems via reductions.

Cook-Levin Theorem 33

Back to work: we need to show that the last result is no coincidence,
everything in NP reduces to SAT.

Theorem (Cook-Levin 1971/1973)

The Satisfiability Problem is NP-complete.

Membership in NP is easy using the standard guess-and-verify approach.

But hardness takes work: we have to express an arbitrary NP-problem as
a Boolean formula.

Note that the following proof should be read just once. Then throw it
away and reconstruct your own proof.

Proof Idea 34

Let A be an arbitrary set (of yes-instances) in NP.

There is a deterministic polynomial time Turing machine M such that M
accepts (x,w) iff x ∈ A where w is some witness of length polynomial in
n = |x|.
The idea is to construct a (rather large) Boolean formula Φx such that

Φx is satisfiable ⇐⇒ M accepts (x,w) for some w.

While the formula is fairly long, it has a clear structure and it can easily
be constructed in time polynomial in n.

It has lots of variables that express information about states, head
position and tape inscriptions: the satisfying truth assignment translates
directly into an accepting computation of M .

Coding Time 35

First off, let N = p(n) be the running time of the machine.

If we have a list of Boolean variables

X0, X1, . . . , XN

and a truth assignment σ we can think of σ(Xt) as the value of variable
X at time t.

We can use logic to pin down the value of Xt+1 in terms of Xt (and
other variables).

∧
t<N

Xt+1 ⇐⇒ ϕ(Xt, . . .)

Coding Numbers 36

If we need to code a number r in a certain range, say 1 ≤ r ≤ m, we can
simply use variables

X(1), X(2), . . . , X(m)

plus a stipulation that exactly one of them is true under σ:

EOm

(
X(1), X(2), . . . , X(m)

)

Here

EOk(x1, . . . , xk) = (x1 ∨ x2 . . . ∨ xk) ∧
∧

1≤i<j≤k

¬(xi ∧ xj).

Note that the size of EOk is O(k2).

Coding Hardware 37

Combining these two ideas we can set up polynomially many Boolean
variables

states St(p), 0 ≤ t ≤ N , 1 ≤ p ≤ m,

head position Ht(i), 0 ≤ t, i ≤ N ,

tape inscription Ct(i), 0 ≤ t, i ≤ N .

that express, for each time 0 ≤ t ≤ N , which state the machine is in,
where the head is, and what’s on the tape.

For simplicity, we assume here that the only tape symbols are 0 and 1, it
is not hard to deal with the general situation.

Coding Moves 38

We then have to express the constraint that the variables change from
time t to time t+ 1 only in accordance with the transition function of the
Turing machine.

For example∧
t<N

Ht(i) ⇒ EO3

(
Ht+1(i−1), Ht+1(i), Ht+1(i+1)

)
∧
t<N

St(p) ∧Ht(i) ∧ ¬Ct(i) ⇒ St+1(q0)∧
t<N

St(p) ∧Ht(i) ∧ Ct(i) ⇒ St+1(q1)

And so on and on.

Start and Stop 39

Initially the input is on the first part of the tape

H0(0) ∧ S0(q0) ∧ C0(1) = x1 ∧ C0(2) = x2 ∧ . . . ∧ C0(n) = xn

and at the end we accept:

SN (qY)

Note that C0(n+ 1), . . . , C0(N) is not fixed and can be set arbitrarily by
σ.

It is not too hard to see that the whole formula Φx in the end has size
polynomial in n.

And It Works 40

Now suppose Φx is satisfied by truth assignment σ.

Then M accepts the original tape inscription (x,w) where x is the real
input and w is the bits chosen freely by σ.

Since Φx forces the values of all the variables to correspond to a
computation of M on input (x,w) we have the desired witness and x
must be a Yes-instance.

Conversely, every witness plus corresponding accepting computation can
be translated into a satisfying truth assignment σ.

That’s it. 2

Improvements 41

The hardness of Satisfiability holds up even when the formulae in
question are rather restricted.

Definition

A literal is a variable or negated variable. A formula is in conjunctive
normal form (CNF) if it is a conjunction of disjunctions of literals:
Φ1 ∧ Φ2 ∧ . . . ∧ Φn where Φi = zi,1 ∨ zi,2 ∨ . . . ∨ zi,k(i), zi,j a literal.

It is in k-CNF if k(i) = k for all i.

In particular 3-CNF is very popular. But note that this is the limit:

Exercise

Show that 2-CNF is solvable polynomial time.

Refinement 42

Theorem

The Satisfiability Problem is NP-complete for formulae in 3-CNF.

Proof.

Bring in the shovel brigade: check the Cook-Levin proof carefully to show
that the formula produced there can easily (meaning: in polynomial time)
be converted into 3-CNF.

2

Beachhead 43

The last result can be used to establish the NP-hardness of many
problems such as Vertex Cover.

It now suffices to find a polynomial time computable function

f : 3-CNF −→ Graphs× Integers

such that ϕ in 3-CNF is satisfiable iff for f(ϕ) = (G, β) the graph G has
a vertex cover of size β.

This is much, much easier than having to deal with general formulae.

Spreading Completeness 44

Satisfiability is a tremendously important practical problem, but if this
were the only relevant NP-complete problem the whole notion would still
be somewhat academic.

But as Dick Karp realized after reading Cook’s paper, there are dozens
(actually: thousands) of combinatorial problems that all turn out to be
NP-complete. So none of them will admit a polynomial time solution
unless P = NP.

The proof method is interesting: some problems are proven hard by
direct reduction from SAT, then these are used to show other problems
are hard, and so on . . . By transitivity one could, in principle, produce a
direct reduction from SAT, but in reality these direct reductions are often
very hard to find.

Vertex Cover 45

Theorem

Vertex Cover is NP-complete.

Proof.

Suppose we have a 3-CNF formula Φ = Φ1 ∧ Φ2 ∧ . . . ∧ Φm where
Φi = zi,1 ∨ zi,2 ∨ zi,3.

The Boolean variables are x1, . . . , xn .

We start with a graph G′ on 2n+ 3m vertices.

Vertices: xi, xi for i = 1, . . . , n and ui,1, ui,2, ui,3 for i = 1, . . . ,m .

Edges: one edge between xi and xi, and three edges that turn ui,1,
ui,2, ui,3 into a triangle.

Picture 46

Proof, cont’d. 47

It is easy to see that every vertex cover of G′ must have at least n+ 2m
vertices (one for each x-edge, and two for each triangle).

And such covers exist, lots of them: you can pick at random one of xi or
xi, and exactly two of ui,1, ui,2, ui,3.

So far we have only used n and m, but not the formula itself.

Let G be the graph obtained by adding 3m more edges to G′:

connect ui,j to xs if zi,j = xs and connect ui,j to xs if zi,j = ¬xs.

Lastly, set the bound to β = n+ 2m.

Picture 48

Proof, cont’d. 49

Claim

G has a cover of size β = n+ 2m iff the formula is satisfiable.

To see this, note that any cover C defines an assignment σ:

σ(xi) =

{
1 if xi ∈ C,

0 otherwise.

Then σ satisfies the formula.

Conversely, every satisfying assignment translates into a cover.

2

Important Points 50

For this construction to work we need two crucial ingredients:

The graph G and the bound β can be computed from Φ in
polynomial time.

G has a vertex cover of size β if, and only if, Φ is satisfiable.

Many other completeness proofs look very similar: it is trivial to see that
the problem is in NP, and it requires work (sometimes a lot of it) to
produce hardness.

Cheap Shots 51

Problem: Independent Set (IS)
Instance: A ugraph G, a bound β.
Question: Does G have an independent set of size β?

Problem: Clique
Instance: A ugraph G, a bound β.
Question: Does G have a clique of size β?

These look rather similar to VC. Is there an algorithmic connection?

All The Same 52

Lemma

VC, IS and Clique are all Karp reducible to each other.

Proof. Let G = 〈V,E 〉 be a graph, Gc its complement, and C ⊆ V .
The following are equivalent:

C is a vertex cover of G.

V − C is an independent set of G.

V − C is a clique of Gc.

Hence f(G, β) = (Gc, n− β) is a reduction from VC to Clique. Rest
similar.

	Complexity
	Cook-Levin

