15-251
Great Ideas in
Theoretical Computer Science

Lecture 18:
NP-completeness continued

March 22nd, 2018

Summary so far

e How do you identify intractable problems?
(problems not in P) e.g. SAT, TSP, Subset-Sum, ...

e Poly-time reductions A <* B are useful to compare
hardness of problems.

e Evidence for intractability of A:
Show L <L A, forall L € C, fora large class C.

C

P
<r A

*)

Summary so far

¢ Definitions of C-hard, C-complete.
C

A
<r A

7]

2 possible worlds

‘
C

= C=complete

(¢] =p

Summary so far

® The complexity class NP (take €= NP)

® NP-hardness, INP-completeness

® Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

NP (CIRCUIT-SAT

7]

® Many other languages are NP-complete.

<F CIRCUIT-SAT

® The P vs NP question

Every L in NP
lCook-Levin Theorem

CIRCUIT-SAT

4 N

3SAT 3COL

7 N\

SUBSET-SUM CLIQUE

| ~
VERTEX-COVER IS

HAMILTONIAN-CYCLE

TSP Red: will show

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

A <L B
M4
Ye
y—> MB > Oers Yes
Tr— No —» or

No

“You can solve A in poly-time
using a blackbox that solves B.”

You can call the blackbox poly(|x|) times.

Karp reduction

INP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

My
T R f . Yes
> transform [flx) — Mp " No
input

Make one call to Mp and directly use its answer as output.
We must have: r€ A = f(z)€e B
cg A = [f(x)¢ B

Can define NP-hardness with respect to <2

(what some courses use for simplicity)

Can define NP-hardness with respect to gi .

(what experts use)

These lead to different notions of NP-hardness.

3COL is NP-complete

3COL is NP-complete: High level steps
3COL is in NP (exercise).

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT <? 3COL.

We need to:

CIRCUIT-SAT =< 3COL: The construction
|.Defineamap f: X" — X"

If 2 is not (C) for a circuit C, map it to e.

So assume x is a valid encoding of a circuit.

Circuit with AND, OR, NOT gates

4

Circuit with only NAND gates

(in addition to input gates and constant gates)

CIRCUIT-SAT =< 3COL: The main gadget

Consider a NAND gate.
x Y

oh)

z and y represent
some other gates.

—(x A'y) becomes the input
of another gate.

For each NAND gate, construct: /

CIRCUIT-SAT =< 3COL: The main gadget

Claim:

A valid coloring of this “gadget”
mimics the behaviour of the
NAND gate.

Colors = {0, I, n}

WLOG:
vertex 0 gets color 0
vertex | gets color |
vertex n gets color

CIRCUIT-SAT =< 3COL: The main gadget

A couple of observations:

Observationl:

vertices T, Y
TAY and —(zAYy)

will not be assigned the color

Observation2:

TAY and —(zAYy)

will be assigned different colors.

CIRCUIT-SAT =< 3COL: Rest of construction

0 g2

\

gadget

g1 go

gadget gadget

CIRCUIT-SAT =< 3COL: Why does it work?

Convince yourself that:

w € CIRCUIT-SAT —> f(w) € 3COL

w ¢ CIRCUIT-SAT = f(w) € 3COL

f is computable in polynomial time.

Poll

Which of the following are true?

-3coL </,
-3coL <}
-3CoL </
-2coL <2
-2C0oL <
-2coL <2

2COL
2COL
2COL
3COL
3COL
3COL

is known to be true.
is known to be false.
is open.

is known to be true.
is known to be false.

is open.

CLIQUE is NP-complete

Want to show:
- CLIQUE is in NP.

- CLIQUE is NP-hard.
3SAT is NP-hard, so show 3SAT <!, CLIQUE.

Definition of CLIQUE

CLIQUE
Input: (G, c) where G is a graph and c is a positive int.
Output: Yes iff G contains a clique of size c.

Definition of 3SAT
3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

e.g:
(331 \Y X2 V l’3) A (_L’El V Tq V 335) A (CEQ V X5 V 5136)
N e’

a clause literal: a variable or its negation

(an OR of literals)

conjunctive normal form: AND of clauses.

Output: Yes iff the formula is satisfiable.

Aside: 3SAT isin NP

o=(z1V-zaVaz)A(mx1VagVas)A(xeV-zsVag)

¢ satisfiable

—
can pick one literal from each clause and set them to True

=
the sequence of literals picked does not contain
both a variable and its negation.

What is a good proof that ¢ € 3SAT ?

CLIQUE is NP-complete: High level steps
CLIQUE is in NP. v/

We know 3SAT is NP-hard.
So suffices to show 3SAT <” CLIQUE.

We need to:
|.Defineamap f:X* — X%
2.Show w € 3SAT — f(w) € CLIQUE
3.Show w ¢ 3SAT — f(w) ¢ CLIQUE

4.Argue f is computable in polynomial time.

3SAT < CLIQUE: Defining the map
|.Defineamap f: 3" — X*

not valid encoding of a 3SAT formula > €

otherwise we have valid 3SAT formula ¢
(with m clauses).

¢ (G, k) (weset k=m)

Construction demonstrated with an example.

3SAT < CLIQUE: Defining the map
A A

p=(r1V-xaVaz)A(-xyVryVe3)A(xyVae V)

3SAT < CLIQUE: Why it works

If « is satisfiable, then G, contains an m-clique:

¢ is satisfiable —

—> (i, contains an m-~clique.

3SAT < CLIQUE: Why it works

If G, contains an m-clique, then ¢ is satisfiable:

G hasaclique K ofsize m =—

= ¢ is satisfiable.

3SAT < CLIQUE: Poly-time reduction?

Creation of G, is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m?2) possible edges.

- scan input formula to determine if an edge
should be present.

