
March 22nd, 2018

15-251
Great Ideas in

Theoretical Computer Science
Lecture 18:

NP-completeness continued

Summary so far
How do you identify intractable problems?
(problems not in P) e.g. SAT, TSP, Subset-Sum, …

Poly-time reductions are useful to compare
hardness of problems.

A P
T B

Evidence for intractability of :
Show , for all C, for a large class C. L P

T A
A

L 2

C

P
T A

P

Summary so far

Definitions of C-hard, C-complete.

C

P
T A

P

A.

C-complete
C

P

 C
= C-complete
= P

2 possible worlds

Summary so far

The complexity class NP (take C = NP)

NP-hardness, NP-completeness

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Many other languages are NP-complete.

The P vs NP question

NP
P

T CIRCUIT-SAT
P

.CIRCUIT-SAT

Every L in NP
Cook-Levin Theorem

Red: will show

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IS

First:
An important note about reductions

Cook reduction

“You can solve A in poly-time
 using a blackbox that solves B.”

x
Yes
or

No

y

MA

MB
Yes
or
No

You can call the blackbox poly(|x|) times.

Cook reductions: poly-time Turing reductions

A BP
T

Karp reduction

NP-hardness is usually defined using Karp reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):

A BP
m

MA

MB
input

or
Yes
Notransform

f
x f(x)

We must have: Ax 2 f(x) 2=) B
f(x) 62x 62 A =) B

Can define NP-hardness with respect to .P
T

Can define NP-hardness with respect to .P
m

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)

3COL is NP-complete

3COL is NP-complete: High level steps

3COL is in NP (exercise).

We need to:

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT 3COL.P

m

CIRCUIT-SAT ≤ 3COL: The construction

1. Define a map .f : ⌃⇤ ! ⌃⇤

 If is not for a circuit C, map it to .x hCi ✏

So assume is a valid encoding of a circuit.x

Circuit with AND, OR, NOT gates

(in addition to input gates and constant gates)
Circuit with only NAND gates

CIRCUIT-SAT ≤ 3COL: The main gadget
Consider a NAND gate.

NAND

x y

¬(x ^ y)

 and represent
some other gates.
x y

¬(x ^ y) becomes the input
of another gate.

For each NAND gate, construct:

CIRCUIT-SAT ≤ 3COL: The main gadget

A valid coloring of this “gadget”
mimics the behaviour of the
NAND gate.

Claim:

Colors = {0, 1, n}

WLOG:
 vertex 0 gets color 0
 vertex 1 gets color 1
 vertex n gets color n

CIRCUIT-SAT ≤ 3COL: The main gadget

Observation1:

vertices ,x y

¬(x ^ y)x ^ y and

will not be assigned the color n.

Observation2:

¬(x ^ y)x ^ y and

will be assigned different colors.

A couple of observations:

CIRCUIT-SAT ≤ 3COL: Rest of construction

NAND

g1 g2

g1 g2

gadget gadget gadget

CIRCUIT-SAT ≤ 3COL: Why does it work?

 CIRCUIT-SAT 3COL=)

 CIRCUIT-SAT 3COL=)

 is computable in polynomial time.f

w 2

w 62 f(w) 62

f(w) 2

Convince yourself that:

Poll

Which of the following are true?

- 3COL 2COL is known to be true.

- 3COL 2COL is known to be false.

P
m

P
m

- 3COL 2COL is open.P
m

- 2COL 3COL is known to be true.

- 2COL 3COL is known to be false.

P
m

P
m

- 2COL 3COL is open.P
m

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.

- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT CLIQUE.P
m

Definition of CLIQUE

CLIQUE

Input: where G is a graph and c is a positive int.

Output: Yes iff G contains a clique of size c.
hG, ci

Definition of 3SAT

3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)

e.g.:

literal: a variable or its negation

Aside: 3SAT is in NP

What is a good proof that 3SAT ? ' 2

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)' =

' satisfiable

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain
both a variable and its negation.

CLIQUE is NP-complete: High level steps

CLIQUE is in NP.

1. Define a map .f : ⌃⇤ ! ⌃⇤

4. Argue is computable in polynomial time.f

3. Show 3SAT CLIQUE=)w 62 f(w) 62

2. Show 3SAT CLIQUE=)w 2 f(w) 2

We need to:

We know 3SAT is NP-hard.
So suffices to show 3SAT CLIQUE.P

m

3SAT ≤ CLIQUE: Defining the map

f : ⌃⇤ ! ⌃⇤

otherwise we have valid 3SAT formula
(with m clauses).

'

Construction demonstrated with an example.

1. Define a map .

not valid encoding of a 3SAT formula ✏7!

' 7! hG, ki (we set)k = m

3SAT ≤ CLIQUE: Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

k = 3

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

3SAT ≤ CLIQUE: Why it works

is satisfiable' =)

If is satisfiable, then contains an m-clique:' G'

=) contains an m-clique.G'

3SAT ≤ CLIQUE: Why it works

If contains an m-clique, then is satisfiable:'G'

 has a clique K of size mG' =)

=) ' is satisfiable.

3SAT ≤ CLIQUE: Poly-time reduction?

Creation of is poly-time:G'

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m2) possible edges.
- scan input formula to determine if an edge
 should be present.

