

Summary so far

- How do you identify intractable problems? (problems not in P) e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_{T}^{P} B$ are useful to compare hardness of problems.
- Evidence for intractability of A :

Show $L \leq_{T}^{P} A$, for all $L \in \mathbf{C}$, for a large class \mathbf{C}.

Summary so far

- Definitions of C-hard, C-complete.

2 possible worlds

- The complexity class NP (take $\mathbf{C}=\mathbf{N P}$)
- NP-hardness, NP-completeness
- Cook-Levin Theorem: CIRCUIT-SAT is NP-complete $\mathbf{N P} \begin{gathered}\text { CIRCUIT-SAT } \\ \mathbb{P}\end{gathered} \leq_{T}^{P}$ CIRCUIT-SAT
- Many other languages are NP-complete.
- The \mathbf{P} vs NP question

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

$$
A \leq_{T}^{P} B
$$

"You can solve A in poly-time using a blackbox that solves B."

You can call the blackbox poly $(|x|)$ times.

Karp reduction

NP-hardness is usually defined using Karp reductions.
Karp reduction (polynomial-time many-one reduction):

Make one call to M_{B} and directly use its answer as output.
We must have: $\quad x \in A \quad \Longrightarrow \quad f(x) \in B$
$x \notin A \Longrightarrow f(x) \notin B$

Can define NP-hardness with respect to \leq_{T}^{P}.
(what some courses use for simplicity)

Can define NP-hardness with respect to \leq_{m}^{P}. (what experts use)

These lead to different notions of NP-hardness.

3COL is NP -complete

3COL is NP-complete: High level steps

$3 C O L$ is in NP (exercise).
We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT $\leq_{m}^{P} 3 \mathrm{COL}$.

We need to:

CIRCUIT-SAT \leq 3COL: The construction

$\underline{\text { I. Define a map } f: \Sigma^{*} \rightarrow \Sigma^{*}}$
If x is not $\langle C\rangle$ for a circuit C, map it to ϵ.
So assume x is a valid encoding of a circuit.

Circuit with AND, OR, NOT gates

Circuit with only NAND gates (in addition to input gates and constant gates)

CIRCUIT-SAT ≤ 3 COL: The main gadget

Consider a NAND gate.

x and y represent
some other gates.
$\neg(x \wedge y)$ becomes the input
of another gate.
For each NAND gate, construct:

CIRCUIT-SAT ≤ 3 COL: The main gadget

Claim:

A valid coloring of this "gadget" mimics the behaviour of the NAND gate.

Colors $=\{\mathbf{0}, \mathrm{I}, \mathrm{n}\}$

WLOG:
vertex $\mathbf{0}$ gets color $\mathbf{0}$ vertex I gets color I vertex \mathbf{n} gets color n

CIRCUIT-SAT ≤ 3 COL: The main gadget

A couple of observations:

Observation I:

vertices x, y
$x \wedge y$ and $\neg(x \wedge y)$
will not be assigned the color n .

Observation2:

$x \wedge y$ and $\neg(x \wedge y)$
will be assigned different colors.

CIRCUIT-SAT \leq 3COL: Rest of construction

gadget

CIRCUIT-SAT ≤ 3 COL: Why does it work?

Convince yourself that:

$w \in$ CIRCUIT-SAT $\Longrightarrow f(w) \in 3$ COL
$w \notin$ CIRCUIT-SAT $\Longrightarrow f(w) \notin 3$ COL
f is computable in polynomial time.

Poll

Which of the following are true?
$-3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is known to be true.

- 3COL $\leq_{m}^{P} 2 \mathrm{COL}$ is known to be false.
$-3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is open.
- 2COL $\leq_{m}^{P} 3 \mathrm{COL}$ is known to be true.
- 2COL $\leq_{m}^{P} 3 \mathrm{COL}$ is known to be false.
$-2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is open.

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.
- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT \leq_{m}^{P} CLIQUE.

Definition of CLIQUE

CLIQUE

Input: $\langle G, c\rangle$ where G is a graph and c is a positive int. Output: Yes iff G contains a clique of size c.

Definition of 3SAT

3SAT
Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

```
e.g.:
    ( (\mp@subsup{x}{1}{}\vee\neg\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\neg\mp@subsup{x}{1}{}\vee\mp@subsup{x}{4}{}\vee\mp@subsup{x}{5}{})\wedge(\mp@subsup{x}{2}{}\vee\neg\mp@subsup{x}{5}{}\vee\mp@subsup{x}{6}{})
        a clause
        (an OR of literals)
```

conjunctive normal form: AND of clauses.

Output: Yes iff the formula is satisfiable.

Aside: 3SAT is in NP

$\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)$
φ satisfiable
\Longleftrightarrow
can pick one literal from each clause and set them to True
\Longleftrightarrow
the sequence of literals picked does not contain both a variable and its negation.

What is a good proof that $\varphi \in$ SAT ?

CLIQUE is NP-complete: High level steps
CLIQUE is in NP.
We know 3SAT is NP-hard.
So suffices to show 3 SAT \leq_{m}^{P} CLIQUE.

We need to:

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ 3SAT $\Longrightarrow f(w) \in$ CLIQUE
3. Show $w \notin$ 3SAT $\Longrightarrow f(w) \notin$ CLIQUE
4.Argue f is computable in polynomial time.

3SAT \leq CLIQUE: Defining the map

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
not valid encoding of a 3SAT formula $\mapsto \epsilon$
otherwise we have valid 3SAT formula φ (with m clauses).
$\varphi \mapsto\langle G, k\rangle \quad$ (we set $k=m$)

Construction demonstrated with an example.

3SAT \leq CLIQUE: Why it works
If φ is satisfiable, then G_{φ} contains an m-clique:
φ is satisfiable \Longrightarrow
$\Longrightarrow \quad G_{\varphi}$ contains an m-clique.

3SAT \leq CLIQUE: Why it works

If G_{φ} contains an m-clique, then φ is satisfiable:
G_{φ} has a clique K of size $m \Longrightarrow$
$\Longrightarrow \varphi$ is satisfiable.

3SAT \leq CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:
Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $\mathbf{O}\left(m^{2}\right)$ possible edges.
- scan input formula to determine if an edge should be present.

