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Great Ideas in 

Theoretical Computer Science 
Lecture 18:

NP-completeness continued

Summary so far
How do you identify intractable problems?
(problems not in P) e.g.  SAT,  TSP, Subset-Sum, …

Poly-time reductions                are useful to compare 
hardness of problems.
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Summary so far

The complexity class NP   ( take  C = NP ) 

NP-hardness,     NP-completeness

Cook-Levin Theorem:   CIRCUIT-SAT  is  NP-complete

Many other languages are NP-complete.

The P vs NP question
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P
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.CIRCUIT-SAT

Every L in NP
Cook-Levin Theorem

Red:  will show

CIRCUIT-SAT

3COL3SAT
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First:
An important note about reductions



Cook reduction

“You can solve A in poly-time 
  using a blackbox that solves B.”
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You can call the blackbox poly(|x|) times.

Cook reductions: poly-time Turing reductions

A        BP
T

Karp reduction

NP-hardness is usually defined using Karp reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):
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Can define NP-hardness with respect to        .P
T

Can define NP-hardness with respect to        .P
m

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)



3COL is NP-complete

3COL is NP-complete:  High level steps

3COL is in NP (exercise).

We need to:

We know CIRCUIT-SAT is NP-hard. 
So it suffices to show CIRCUIT-SAT        3COL.P

m

CIRCUIT-SAT ≤ 3COL:  The construction

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

  If     is not        for a circuit C,  map it to   .x hCi ✏

So assume      is a valid encoding of a circuit.x

Circuit with AND, OR, NOT gates

(in addition to input gates and constant gates)
Circuit with only NAND gates



CIRCUIT-SAT ≤ 3COL:  The main gadget
Consider a NAND gate.

NAND

x y

¬(x ^ y)

    and     represent 
some other gates.
x y

¬(x ^ y)              becomes the input
of another gate.

For each NAND gate, construct:

CIRCUIT-SAT ≤ 3COL:  The main gadget

A valid coloring of this “gadget”
mimics the behaviour of the 
NAND gate.

Claim:

Colors = {0, 1, n}

WLOG:
   vertex 0 gets color 0
   vertex 1 gets color 1
   vertex n gets color n

CIRCUIT-SAT ≤ 3COL:  The main gadget

Observation1:

vertices     ,x y

¬(x ^ y)x ^ y and

will not be assigned the color n.

Observation2:

¬(x ^ y)x ^ y and

will be assigned different colors.

A couple of observations:



CIRCUIT-SAT ≤ 3COL:  Rest of construction

NAND

g1 g2

g1 g2

gadget gadget gadget

CIRCUIT-SAT ≤ 3COL:  Why does it work?

        CIRCUIT-SAT                        3COL=)

        CIRCUIT-SAT                        3COL=)

      is computable in polynomial time.f

w 2

w 62 f(w) 62

f(w) 2

Convince yourself that:

Poll

Which of the following are true?

- 3COL        2COL  is known to be true.

- 3COL        2COL  is known to be false.

P
m

P
m

- 3COL        2COL  is open.P
m

- 2COL        3COL  is known to be true.

- 2COL        3COL  is known to be false.

P
m

P
m

- 2COL        3COL  is open.P
m



CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.

- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT        CLIQUE.P
m

Definition of CLIQUE

CLIQUE

Input:            where G is a graph and c is a positive int.

Output:  Yes iff G contains a clique of size c.
hG, ci



Definition of 3SAT

3SAT

Input:  A Boolean formula in “conjunctive normal form” 
in which every clause has exactly 3 literals.

Output:  Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)

e.g.:

literal: a variable or its negation

Aside:  3SAT is in NP

What is a good proof that         3SAT ? ' 2

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)' =

' satisfiable

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain 
both a variable and its negation.

CLIQUE is NP-complete:  High level steps

CLIQUE is in NP.

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

3. Show        3SAT                        CLIQUE=)w 62 f(w) 62

2. Show        3SAT                        CLIQUE=)w 2 f(w) 2

We need to:

We know 3SAT is NP-hard. 
So suffices to show 3SAT        CLIQUE.P

m



3SAT ≤ CLIQUE:  Defining the map

f : ⌃⇤ ! ⌃⇤

otherwise we have valid 3SAT formula    
(with m clauses).

'

Construction demonstrated with an example.

1. Define a map                       .

not valid encoding of a 3SAT formula ✏7!

' 7! hG, ki (we set             )k = m

3SAT ≤ CLIQUE:  Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

k = 3

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

3SAT ≤ CLIQUE:  Why it works

is satisfiable' =)

If       is satisfiable,  then        contains an m-clique:' G'

=)       contains an m-clique.G'



3SAT ≤ CLIQUE:  Why it works

If        contains an m-clique,  then     is satisfiable:'G'

       has a clique  K  of size mG' =)

=) ' is satisfiable.

3SAT ≤ CLIQUE:  Poly-time reduction?

Creation of        is poly-time:G'

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m2) possible edges.
- scan input formula to determine if an edge 
  should be present.


