

- How do you identify intractable problems? (problems not in P)
 e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_T^P B$ are useful to compare hardness of problems.
- Evidence for intractability of A: Show $L \leq_T^P A$, for <u>all</u> $L \in \mathbb{C}$, for a large class \mathbb{C} .

3COL is NP -complete: High level steps
3COL is in NP (exercise).
We know CIRCUIT-SAT is NP -hard. So it suffices to show CIRCUIT-SAT \leq_m^P 3COL.
We need to:

CIRCUIT-SAT \leq 3COL: The main gadget
Claim: A valid coloring of this "gadget" mimics the behaviour of the NAND gate.
WLOG: vertex 0 gets color 0 vertex 1 gets color 1
vertex n gets color n

CIRCUIT-SAT \leq 3COL: The main gadget	
A couple of observations:	
Observation 1:	
vertices x u	
$x \wedge y$ and $ eg(x \wedge y)$	
will not be assigned the color n .	
Observation2:	
$x \land y$ and $\neg (x \land y)$	
$x \land y$ and $(x \land y)$	
will be assigned different colors.	

CIRCUIT-SAT \leq 3COL: Why does it work?	
Convince yourself that:	
$w \in \text{CIRCUIT-SAT} \implies f(w) \in \text{3COL}$ $w \notin \text{CIRCUIT-SAT} \implies f(w) \notin \text{3COL}$	
f is computable in polynomial time.	

Which of the following are true?

- 3COL \leq_m^P 2COL is known to be true.
- 3COL \leq_m^P 2COL is known to be false.
- 3COL \leq^P_m 2COL is open.
- 2COL \leq^P_m 3COL is known to be true.
- 2COL \leq_m^P 3COL is known to be false.
- 2COL \leq_m^P 3COL is open.

- CLIQUE is in NP.
- CLIQUE is **NP**-hard.

3SAT is **NP**-hard, so show 3SAT \leq_m^P CLIQUE.

Definition of 3SAT

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

CLIQUE is NP -complete: High level steps
CLIQUE is in NP. 🗸
We know 3SAT is NP -hard. So suffices to show 3SAT \leq_m^P CLIQUE.
We need to:
I. Define a map $f: \Sigma^* \to \Sigma^*$.
2. Show $w \in$ 3SAT $\implies f(w) \in$ CLIQUE
3. Show $w \not\in 3SAT \implies f(w) \notin CLIQUE$
4. Argue f is computable in polynomial time.

$3SAT \leq CLIQUE$: Why it works
If φ is satisfiable, then G_{φ} contains an <i>m</i> -clique:
$arphi$ is satisfiable \Longrightarrow
$\implies G_{\varphi}$ contains an <i>m</i> -clique.

