
GTI

Approximation Algorithms

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

1 Optimization Problems

� Traveling Salesman Problem

Minimizing Cost 3

There are lots of combinatorial problems that take the following form:

a set I of instances

a solution function sol : I → P0(Σ?)

a cost function cost : solutions→ N+

The optimal value associated with an instance x is

optval(x) = min
(

cost(z) | z ∈ sol(x)
)

Details 4

We are interested in finding an optimal solution, some z ∈ sol(x) such
that cost(z) = optval(x).

Note that optimal solutions need not be uniquely determined, though
their value is.

If you are a stickler for precision, you might want to deal with the case
sol(x) = ∅: we can just set optval(x) =∞ and everything will work fine.

Of course, type theorists are now having a cow since ∞ /∈ N. Relax,
smell the flowers, have a single malt . . .

Hardness? 5

It is perfectly fine that sol(x) is a very simple set with a trivial
membership test.

The difficulty in finding a solution of optimal value is that sol(x) is
exponentially large, and we have no direct way of identifying the cheap
guys.

Typical Example: Vertex Cover

Here sol(G) = all vertex covers. Given a candidate set C ⊆ V , it is trivial
to check that C is a solution.

Letting cost(C) = |C| we want a minimum cardinality VC.

Decision Version 6

To connect to the complexity class NP we consider a (slightly artificial)
decision version:

Problem: Foobag Problem
Instance: Instance x, a bound β.
Question: Is there a solution of cost at most β?

In other words, we are asking whether optval(x) ≤ β?

Very often a fast solution to the decision version also produces a fast
solution to the optimization problem: we can build an optimal solution in
stages.

Typical Example: Vertex Cover

Alas . . . 7

Experience shows that lots of these optimization problems are
NP-complete (more precisely: their decision versions are).

vertex cover

independent set

clique

longest path

longest cycle

Note that some of these are actually maximization problems.
Alternatively, we can cook up artificial cost functions and minimize: e.g.,
for independent set could use cost(X) = n− |X|.

Approximation 8

Since we presumable cannot solve the decision version in polynomial
time, it is natural to relax the requirements a bit: instead of finding an
optimal solution, we will make do with z ∈ sol(x) such that

cost(z) ≤ k · optval(x)

where k is some fixed constant.

A polynomial time algorithm that produces such a solution is called a
k-approximation algorithm for the problem.

Note that a 1-approximation algorithm corresponds to a perfect solution,
and thus is unlikely to exist.

Classical Example: Vertex Cover 9

Theorem (Gavril, Yannakakis)

There is 2-approximation algorithm for Vertex Cover.

Proof.

The algorithm is infuriatingly simple

1 C = empty
2 while(some edge {u,v} is not covered)
3 add u, v to C

But we need a performance guarantee.

Back To Matchings 10

Note that endpoints of the edges in a maximal matching necessarily form
a vertex cover: otherwise we could add an edge.

But clearly the Gavril/Yannakakis algorithm produces a maximal
matching (though not necessarily a maximum one).

Proposition

optval(G) ≥ |M | for any maximal matching.

Clearly every vertex cover must contain at least one endpoint of every
edge in any matching.

Done.

Tightness 11

There is a simple scenario when our approximation algorithm produces a
cover of size exactly twice the optimum: a complete bipartite graph.

Exercise 12

The Gavril/Yannakakis algorithm is deceptively simple. Most algorithms
people would probably try to optimize it a bit, along the lines of

1 C = empty
2 while(some edge is not covered)
3 find vertex x incident to most uncovered edges
4 add x to C

Exercise

Figure out how good this “improved” approximation algorithm is (hint:
not very).

Linear Programming 13

Here is a much fancier way to get approximate solutions for vertex cover:
use a powerful algorithm that solves the wrong problem, then fix things
up.

First, an instance of Linear Programming (LP) expresses a minimization
problem for n variables and m constraints, with a linear objective
function.

More precisely, we have A ∈ Zm,n, m ≤ n, b ∈ Zm and a c ∈ Zn.

We want a real vector x ∈ Rn that

minimize z = c ◦ x
Ax ≥ b
x ≥ 0

The function x 7→ c ◦ x =
∑
cixi is the objective function.

This is an LP in canonical form.

Geometry 14

For canonical form LP’s there is a natural geometric interpretation.

P = {x ∈ Rn | Ax ≥ b ∧ x ≥ 0 }

is a convex polytope in n-dimensional space and contained in the first
orthant.

This is called the set of feasible solutions or the simplex. For any number
d the set {x ∈ Rn | c ◦ x = d } is a hyperplane perpendicular to c.

Thus we have to find the first point in P where a hyperplane
perpendicular to c intersects P (if it is moved from infinity towards the
simplex in the appropriate direction).

2-D 15

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Algorithms 16

Simplex Algorithm There is a famous algorithm due to George Dantzig
from 1947, arguably one of the most important algorithms
period. It works well in most cases, but is exponential in
the worst case. It is polynomial for some notion of average
case.

Karmarkar’s Algorithm Invented in 1984, an interior point method that is
guaranteed to be polynomial time.

3-D Simplex 17

Integer Version 18

Alas, when we restrict the variables to be integral, x ∈ Zn, things turn
sour: the corresponding Integer Programming problem is NP-hard.

But IP is quite expressive and really one of the goto hard problems in NP.

Also note that hardness for IP is not difficult to show, it was on the list
of Karp’s 21 problems.

But membership in NP requires a bit of work: we have to make sure that
a solution does not require an absurd number of digits to write down.

Who Cares? 19

It turns out to be really easy to translate Vertex Cover into Integer
Programming

Given G = 〈V,E 〉 introduce a variable xv for each vertex v.

Then write down some obvious constraints on the xv and minimize their
sum (which will turn out to be the size of a minimum cover).

A 0/1-Integer Programming Problem 20

Insist on x ∈ Zn.

Minimize
∑
xv subject to

xu + xv ≥ 1 {u, v} ∈ E

0 ≤ xv ≤ 1

Note that C = { v | xv = 1 } is a minimal vertex cover.

Great, but 0/1-Integer Programming is NP-hard and we are going around
in circles.

A Leap of Faith 21

How about accepting a real LP solution x ∈ Rn, which somehow will
produce a “fractional vertex cover” (of course, a priori fractions don’t
really make any sense).

So we may get solutions like xv = 1/3, or xv = 7/8.

Surprisingly,

C = { v | xv ≥ 1/2 }

is a vertex cover, and has size at most twice the minimal one.

C clearly is a cover: xu + xv ≥ 1 implies xu ≥ 1/2 or xv ≥ 1/2.

Error 22

Write x̂v = 1 whenever xv ≥ 1/2, and x̂v = 0 otherwise.

|C| =
∑

x̂v

≤ 2 ·
∑

xv

= 2 · optvalLP

≤ 2 · optvalIP

= 2 · optvalV C

� Optimization Problems

2 Traveling Salesman Problem

Traveling Salesman Problem 24

Suppose we have cost function on the edges of a complete graph Kn.

A tour of the graph is a permutation π of [n]: think of the cycle

vπ(1), vπ(2), vπ(3), . . . , vπ(n), vπ(1)

The cost of π is the sum of all the edge costs on the cycle.

Problem: Traveling Salesman Problem (TSP)
Instance: A cost function on the edges of Kn, a bound β.
Question: Is there a tour of cost at most β?

Icosahedron and Dodecahedron 25

Cost is Euclidean distance if there is an edge, ∞ otherwise.

Albania to Spain 26

A variant where we leave out the last edge (that closes the cycle).

Hardness 27

Theorem

TSP is NP-complete.

Proof.

Reduction from Hamiltonian Cycle.

Suppose G is a ugraph on n points. Define a cost function on Kn as
follows:

cost(e) =

{
1 if e ∈ E,

2 otherwise.

Then there is a tour of cost n iff G has a Hamiltonian cycle.

2

Pushing Things 28

Lemma

There is no k-approximation algorithm for general TSP.

Proof.

Assume otherwise.

Again use Hamiltonian Cycle and let G be a ugraph on n points. Define
a cost function on Kn as follows:

cost(e) =

{
1 if e ∈ E,

k · n otherwise.

Done. 2

Variants 29

There are natural variants of TSP obtained by introducing more
geometry:

Metric TSP cost is symmetric, and the triangle inequality holds:

cost(x, y) ≤ cost(x, z) + cost(z, y)

Euclidean TSP Vertices are points and distance is Euclidean distance.

These restrictions do not break NP-hardness, but they make
approximation algorithms easier. Note that membership in NP becomes
problematic in the Euclidean setting.

Nearest Neighbor 30

Perhaps the most tempting strategy for a Metric TSP is to go greedy:
start in some random place, then always go to the nearest untouched
neighbor.

Local Optimization 31

Unfortunately, the crossover between 1-5 and 4-9 is clearly wrong.

However, we can fix small problems like this one by a little
post-processing: walk around the tour, and eliminate all crossovers.
Clearly, this takes only polynomial time.

True, but this does not address global mistakes. With a little effort, one
can make nearest-neighbor produce a catastrophically bad tour.

Proposition

The nearest neighbor approach does not produce an k-approximation
algorithm for any k.

Spanning Trees 32

Here is a clever idea: we know that we can efficiently calculate minimum
spanning trees. It is tempting to exploit a MST to buid a tour.

Walk around the spanning tree, traversing each edge in the tree
twice.

Eliminate multiple occurrences of vertices by exploiting the triangle
inequality.

In other words, we start with a cycle and wind up with a simple cycle of
equal or better cost.

Points 33

Tree 34

Once Around 35

Contract 36

Analysis 37

Theorem

Once-around-the-spanning-tree is a 2-approximation algorithm for Metric
TSP.

Proof. Dropping one edge turns a tour into a spanning tree. 2

Exercise

Explain exactly how to implement the contraction phase of the algorithm.
What is the running time of your algorithm?

Improvement 38

Doubling the edges in T essentially turns T into an Eulerian
(multi-)graph. A better way to do this is to only add edges to the
odd-degree points.

There is an even number of such points Vodd. We want a minimum cost
matching for Vodd.

Claim

The cost of such a matching is at most 1/2 the cost of an optimal tour.

Theorem

There is a 3
2 -approximation algorithm for metric TSP.

Approximating 1 39

As it turns out, 3/2 is not the end of the story.

Arora and Mitchell have constructed (1 + ε)-approximation algorithms for
Metric TSP. Note, though, that the running time increases when ε
decreases.

Needless to say, these algorithms are more complicated and their analysis
requires major work.

Recursion Theory versus Complexity Theory 40

In the classical theory of computation, theorems are simply consequences
of the axioms (Peano, or some fragment of set theory). Lots and lots of
separation results are known, we basically understand the lay of the land.
Typical example: semidecidable sets that lie strictly between Halting and
decidable.

Theorem (Friedberg, Muchnik 1956/7)

There are intermediate semidecidable sets: ∅ <T A <T K.

The proof is absolutely beautiful and very intricate. Unfortunately, it
produces completely artificial examples.

http://www.cs.cmu.edu/~cdm/pdf/75-priority.pdf

And P/NP? 41

Theorem (Ladner 1975)

If P 6= NP, then there are intermediate problems wrto polynomial time
reducibility.

The proof is quite similar to the Friedberg/Muchnik construction and
produces an entirely artificial example of an intermediate problem.

Alas, we currently have little hope to get rid of the annoying conditional:
if such-and-such separation result holds, then such-and-such claim is
true.

It’s your job to remove the training wheels and produce unconditional
results.

Optimality of Approximation 42

Obviously, if P = NP, then every NP problem has a 1-approximation
algorithm.

For Vertex Cover, k = 2 is quite easy. With effort we can get
2 = Θ(1/

√
log n). But k < 1.36 collapses P and NP.

For TSP, k = 3/2 is not too hard. With effort, we can get arbitrarily
close to k = 1. The only collapse would be k = 1.

A Maximization Problem 43

The Maximum Coverage Problem is the following.

Given a collection S1, S2, . . . , Sm of subsets of [n] and a bound β,
maximize |

⋃
i∈I Si| where I ⊆ [m] and |I| = β.

Theorem

The Maximum Coverage Problem is NP-complete.

Note that this time the optimal solution will have larger “cost.”

Greedy Approach 44

There is a natural greedy algorithm for MCP: always try to hit as many
uncovered elements of [n] as possible.

1 for i = 1 .. beta
2 pick the set that covers the
3 largest number of uncovered elements

Theorem

MCP admits a (1− 1/e)-approximation algorithm.

The Conditional Wall 45

Unless P = NP, this is the best we can do: any approximation algorithm
better than (1− 1/e) ≈ 0.632121 would already collapse the two
complexity classes.

Note that MCP is quite similar to Set Cover:

Again there is a collection S1, S2, . . . , Sm of subsets of [n] and a bound
β, but this time

⋃
Si = [n] and we want to find I ⊆ [m] of cardinality at

most β such that |
⋃
i∈I Si = [n]|.

	Optimization Problems
	Traveling Salesman Problem

