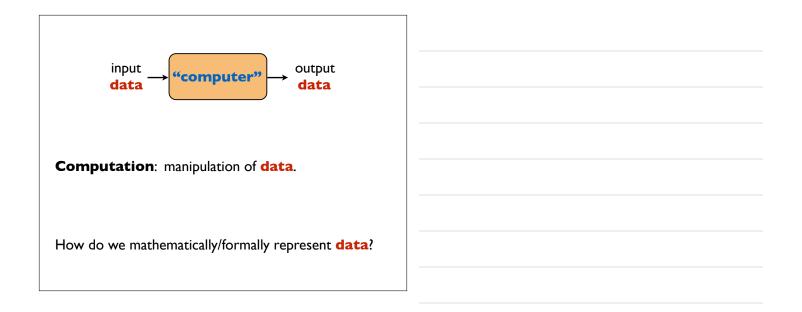


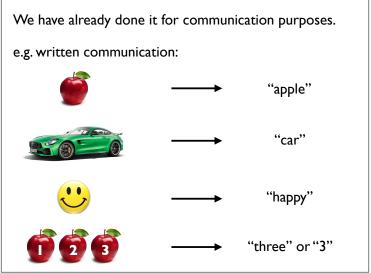
squares needed initially to infect the whole board?

Objects/concepts we want to study and understand

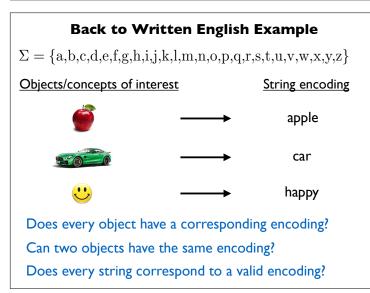
Mathematical model (formal, precise definitions)

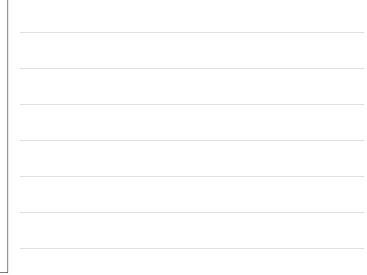
Mathematically/rigorously prove facts/theorems



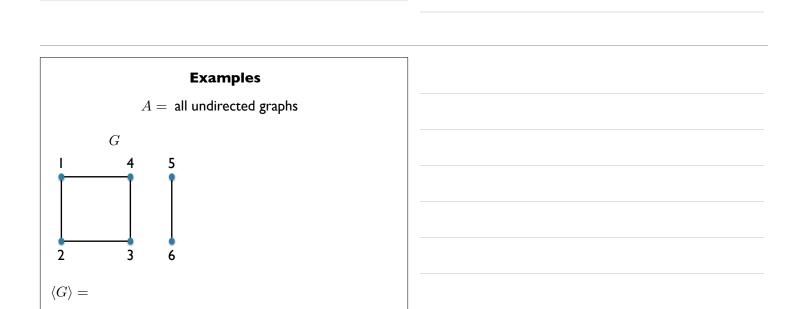


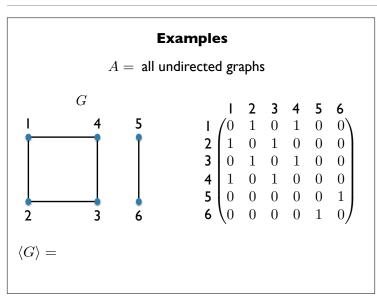
English alphabet
$\Sigma = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$
Turkish alphabet
$\Sigma = \{a, b, c, \varsigma, d, e, f, g, \overline{g}, h, \iota, i, j, k, l, m, n, o, \overline{o}, p, r, s, \varsigma, t, u, \overline{u}, v, y, z\}$
What if we had more symbols?
What if we had less symbols?
Binary alphabet
$\Sigma = \{0, 1\}$

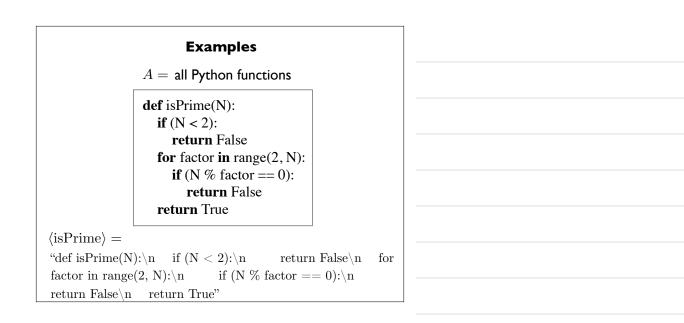


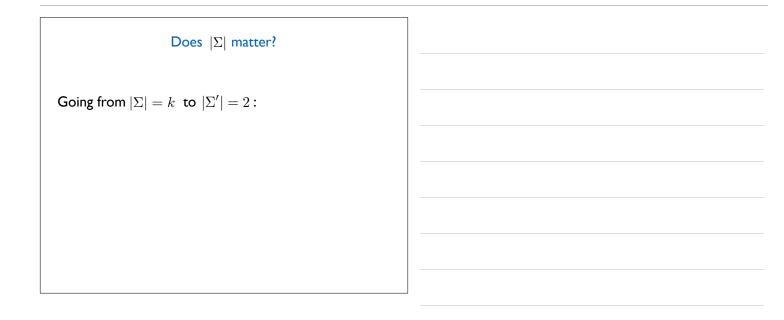


 $A=\mathbb{N}\times\mathbb{N}$







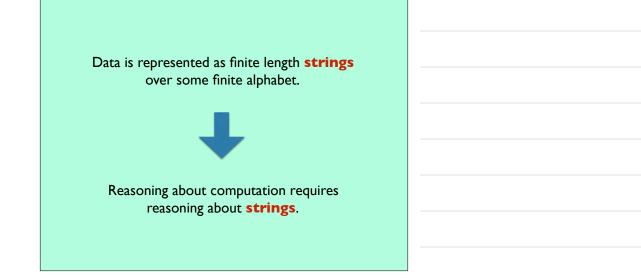


Does $ \Sigma $ matter?			
Binary	vs Unary		
0	ϵ		
10			
100			
110			
1000			
1010			
1011			
	Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011	BinaryvsUnary0 ϵ 11101111111101111101111101111110111111011111110011111111001111111100111111111001111111111010111111111011111111111	

Rinary ve Unary
Binary vs Unary
has length in binary
<i>i</i> has length in unary
n has length in base k

Which sets are encodable?]

What about uncountable sets?	



Induction

(powerful tool for understanding recursive structures)

Induction Review

Domino Principle

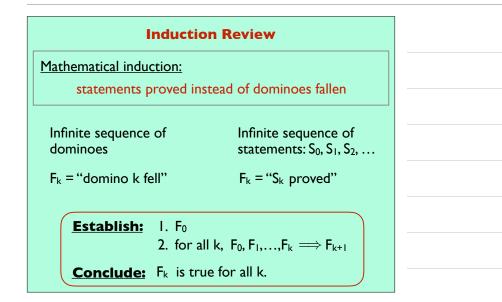
Line up any number of dominos in a row, knock the first one over and they will all fall.

Induction Review

Domino Principle

Line up an <u>infinite</u> row of dominoes, one domino for each natural number. Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don't all fall. Let **k** be the *lowest numbered domino* that remains standing. Domino **k-I** did fall. But then **k-I** knocks over **k**, and **k** falls. So **k** stands and falls, which is a contradiction.



Different ways of packaging inductive reasoning

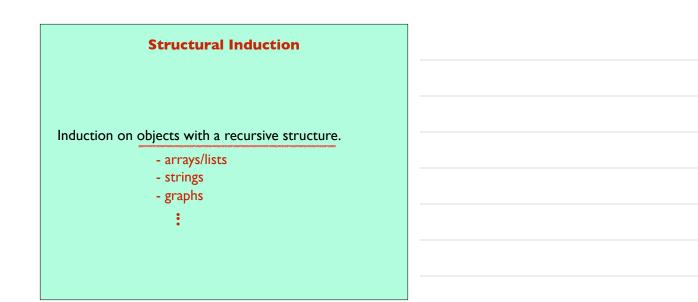
STRONG INDUCTION

METHOD OF MIN COUNTER-EXAMPLE

INVARIANT INDUCTION

STRUCTURAL INDUCTION

...



Structural Induction

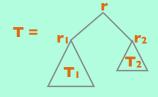
Recursive definition of a string over Σ :

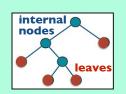
- the empty sequence $|\varepsilon|$ is a string.
- if x is a string and $a \in \Sigma$, then ax is a string.

Structural Induction

Recursive definition of a rooted binary tree:

- a single node **r** is a binary tree with root **r**.
- if **T**₁ and **T**₂ are binary trees with roots **r**₁ and **r**₂, then **T** which has a node **r** adjacent to **r**₁ and **r**₂ is a binary tree with root **r**.





Every node has 0 or 2 children.

Structural Induction

Proposition: Let **T** be a binary tree.

Let $L_T = \#$ leaves in T. Let $I_T = \#$ internal nodes in T. Then $L_T = I_T + I$.

Structural Induction

Proof (by structural induction):

Structural Induction

The outline of structural induction:

Base step: check statement true for base case(s) of def'n.

Recursive/induction step:

prove statement holds for **new objects** created by the recursive rule, assuming it holds for **old objects** used in the recursive rule.

Structural Induction

Why is that valid?

Usually another explicit parameter can be used to induct on.

<u>Previous example</u>: could induct on the parameter **height**.

Structural Induction

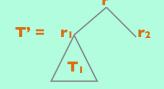
Be careful! What is wrong with the following argument?

Strong induction on height.

Base case true.

Take an arbitrary binary tree **T** of height **h**.

Let **T**' be the following tree of height **h**+**l**:



blah blah blah Therefore statement true for **T**' of height **h+1**.

Structural Induction

Another example with strings:

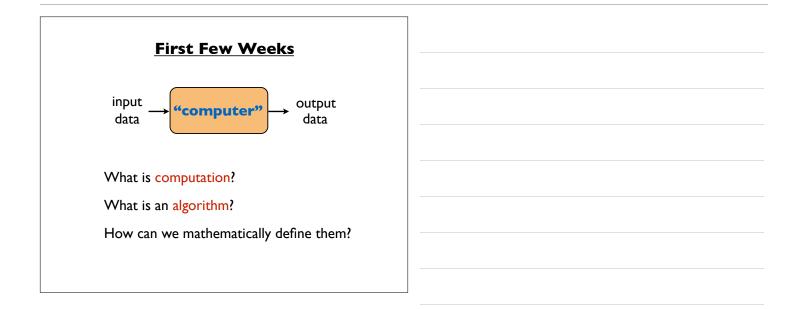
Let $L \subseteq \{0,1\}^*$ be recursively defined as follows: - $\epsilon \in L$;

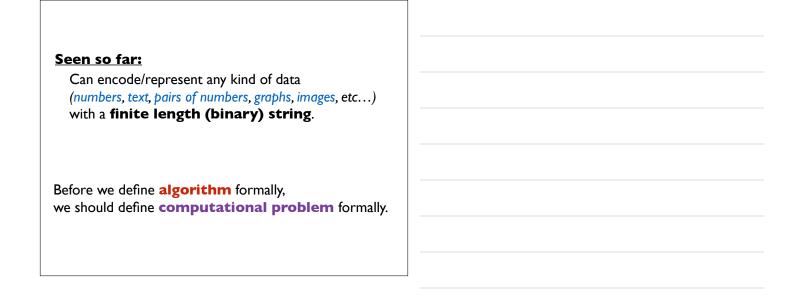
- if $x, y \in L$, then $0x1y0 \in L$.

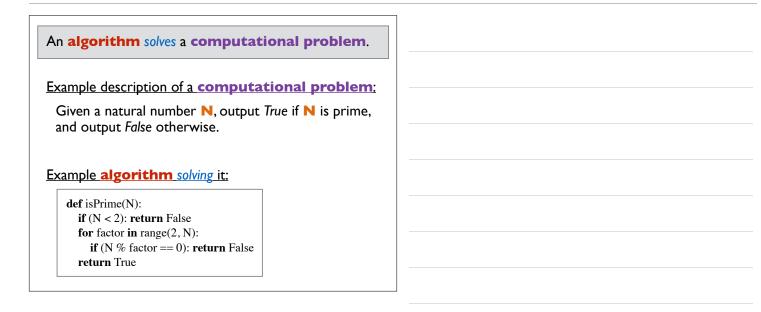
Prove that for any $w \in L$, $\#(0,w) = 2 \cdot \#(1,w)$.

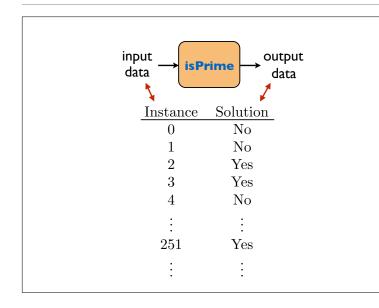
number of 0's in w

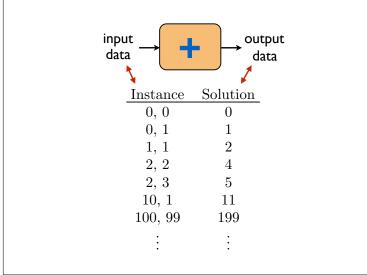
number of I's in w

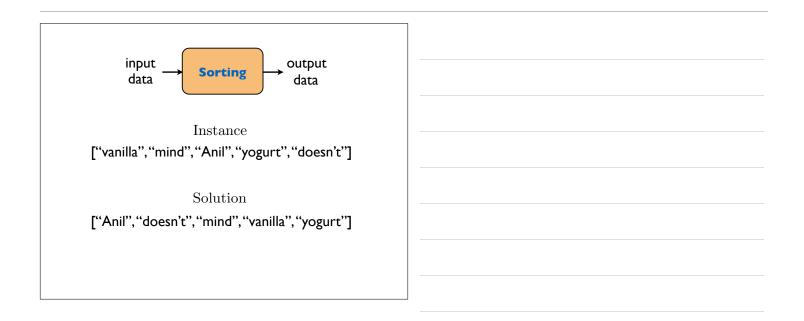


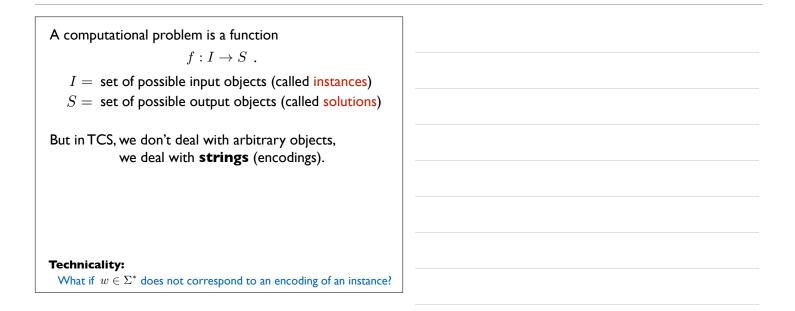


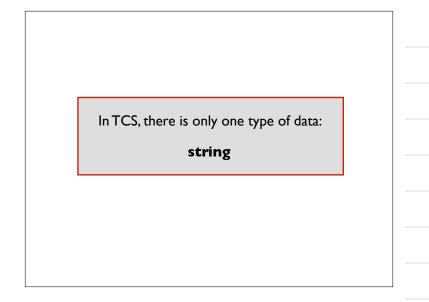




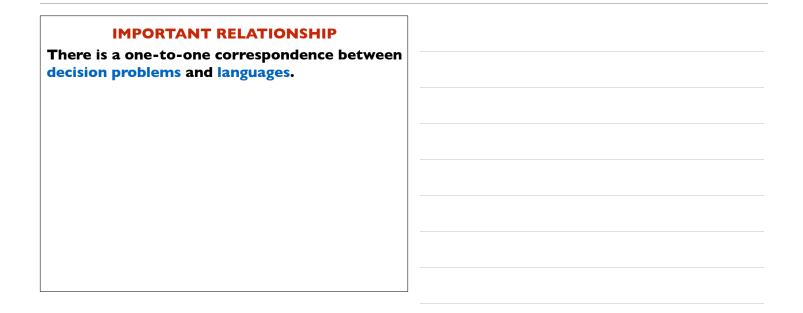








IMPORTANT DEFINITIONS	



computational problem \approx corresponding decision problem

Integer factorization problem:

Given as input a natural number \mathbb{N} , output its prime factorization.

Decision version:

Given as input natural numbers N and k, does N have a factor between I and k?

INTERESTING QUESTIONS WE WILL EXPLORE ABOUT COMPUTATION

Are all languages computable/decidable?

If not, how can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding languages?

How do we classify languages according to resources needed to decide them?

P = NP?