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1 Randomness

� Probability Theory



Total Recall 3

As you may remember fondly, you already saw an introduction to
probability in 15-151:

C. Newstead & J. Mackey
An Infinite Descent Into Pure Mathematics
Chap. 7

This is the wilted stack of notes under your pillow . . .



Battleplan 4

Next week we will discuss the use of randomness to speed up algorithms,
one of the most important ideas in the theory of algorithms.

In preparation, this lecture is a

gentle reminder to go back an re-read Chap. 7, if need be, and

an attempt to explain some of the more foundational issues;



What The Hell Is Randomness? 5

Randomness is one of the most perplexing ideas in ToC: defining
randomness in any mathematically correct way is very, very hard.

Yet, any 6-year old knows very well from experience what randomness is:
flipping a coin or rolling a die is a perfect example.



How Random Is It? 6

Is the randomness in a coin-toss real or is it
actually confined to just the initial
conditions?

Persi Diaconis, a Stanford mathematician
and highly accomplished professional
magician, supposedly can consistently
produce ten consecutive heads flipping a
coin – by carefully controlling the initial
conditions.



Lava Lamps 7



Krypton-85 8

Radioactivity is another great source of randomness – except that no one
likes to keep a lump of radioactive material and a Geiger-Müller counter
on their desk. Solution: keep the radioactive stuff someplace else and get
the random bits over the web.

True random bits from www.fourmilab.ch.

https://en.wikipedia.org/wiki/Geiger_counter
www.fourmilab.ch


Huge Difference 9

The last system (and also the lava lamps, see below) is very different
from the others: if our current understanding of physics is halfway
correct, there is no way to predict certain events in quantum physics, like
radioactive decay. It is fundamentally impossible (even if we could
establish initial conditions correctly, which we cannot thanks to Herr
Heisenberg).

The other, purely mechanical systems such as dice and coins, we
encounter deterministic chaos: given sufficiently precise descriptions of
the initial conditions, and sufficient compute power, one could in principle
compute the outcomes (if we think of them as classical systems).

In principle only, not in practice.



Lorenz Attractor 10

Here is a famous example discovered by Lorenz in the 1963, in an attempt
to study a hugely simplified model of heat convection in the atmosphere.

x′ = σ(y − x)

y′ = rx− y − xz

z′ = xy − bz

These are not spatial coordinates, x stands for the amplitude of
convective motion, y for temperature difference between rising and falling
air currents, and z between temperature in the model and a simple linear
approximation.

For certain values of the parameters we get the following behavior.





Pre-History 12

In the olden days, the RAND Corporation used a kind of electronic
roulette wheel to generate a million random digits (rate: one per second).

In 1955 the data were published under the title:

A Million Random Digits With 100,000 Normal Devi-
ates

“Normal deviates” simply means that the distribution of the random
numbers is bell-shaped rather than uniform. But the New York Public
Library shelved the book in the psychology section.

The RAND guys were surprised to find that their original sequence had
several defects and required quite a bit of post-processing before it could
pass muster as a random sequence. This took years to do.

Available at RAND.

http://www.rand.org/publications/classics/randomdigits


Fiat Lux 13

Incidentally, Noll and Cooper at Silicon Graphics discovered one day that
the pretty lava lamps were completely irrelevant: they could get even
better random bits with the lens cap on (there is enough noise in the
circuits to get good randomness).

Another way to use light, very much unlike the original lava lamp system,
is to exploit an elementary quantum optical process: a photon hitting a
semi-transparent mirror either passes or is reflected.

The Quantis systems was developed at the University of Geneva, the first
practical model was released in 1998.

Note that quantum physics is the only part of physics that claims that
the outcome of certain processes is fundamentally random (which is why
Einstein was never very fond of quantum physics).

See Idquantique.

http://www.idquantique.com/


The Magic Device 14

A true random number generator.



Quantis TRNG 15

Features

True quantum randomness

High bit rate, up to 16Mbits/sec

Low-cost device (1000+ Euros)

Compact and reliable

USB or PCI, drivers for Windows and Linux

Applications

Numerical Simulations

Statistical Research

Lotteries and gambling

Cryptography



Hilbert’s 6th Problem 16

Mathematical Treatment of the Axioms of Physics.

The investigations on the foundations of geometry suggest
the problem: To treat in the same manner, by means of ax-
ioms, those physical sciences in which already today math-
ematics plays an important part; in the first rank are the
theory of probabilities and mechanics.

Kolmogorov axiomatized probability, but there is no hope for an axiomatic
treatment of all of physics anywhere in the near future. It’s all poetry.



Some Don’t Mind 17

Is should be noted that even today not everyone participates in the quest
for absolute Hilbertian precision.

For example, physics super-star Steven
Weinberg writes in a book on quantum field
theory

. . . there are parts of this book that
will bring tears to the eyes of the
mathematically inclined reader.

In physics, this attitude may be a good thing that helps the field along.
In ToC, it would more likely be an unmitigated disaster.



Random Sequences 18

It is somewhat easier to define what one means by an infinite random bit
sequence rather than dealing with random finite sequences:

α = a0, a1, a2, . . . , an, . . . ∈ 2ω

Intuitively, what properties would we expect from a random α?

Always think of α as being generated by infinitely many coin tosses. Of
course, we want the coin to be fair.

It is a really obnoxiuous question to ask what it means for a coin to be
fair.



Limiting Density 19

It is easy to define the density of a finite binary word x of length n:

D(x) = 1/n
∑
i

xi

But how about an infinite sequence α?

Definition (Density)

Let α ∈ 2ω and define the density of α up to n to be
D(α, n) = D(α[n]).

The limiting density of α is

D(α) = lim
n→∞

D(α, n)



Weinberg to the Rescue 20

Note that there is a huge problem with this definition: limits are precisely
defined in analysis.

But α is a wild-and-woolly object of our imagination, and there is not
much reason to assume that this particular limit should exist.

In fact, it does not always exist, but we will take the patented Weinberg
Approach: fuggedaboudit.



The Law of Large Numbers 21

The LoLN says that if we repeat an experiment often, the observed
average does in fact converge to the expected value; almost certainly.

For example, for an unbiased coin we should expect to approach the
limiting density of 1/2, almost always.

Also note that we should not expect the averages to be exactly equal to
the expectation.

For example, performing a one-dimensional random walk with steps ±1
we should expect to be up to O(

√
n) from the origin after n steps.



A Random Walk 22
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Decimation 23

How about using Roman military traditions
to define randomness?

In 1919 Richard von Mises suggested a
notion of randomness based on the limiting
density of the sequence itself and various
decimations of it.

The idea is that “reasonable” subsequences
of the given sequence should also have
limiting density 1/2.

Definition

An infinite sequence α ∈ 2ω is Mises random if the limiting density of
any subsequence (aij ) is 1/2 where the subsequence is selected by a
Auswahlregel.



Auswahlregeln 24

So what on earth is a Auswahlregel, a selection rule?

Intuitively, the following decimations all should have limiting density 1/2:

a0, a1, a2, . . . , an, . . .

a0, a2, a4, . . . , a2n, . . .

a1, a4, a7, . . . , a3n+1, . . .

a0, a1, a4, . . . , an2 , . . .

a2, a3, a5, . . . , a15485863, . . .

In fact, we might want for any reasonable strictly monotonic function
f : N→ N that

αf = af(0), af(1), af(2), . . . , af(n), . . .

has limiting density 1/2.



Mises’ Definition 25

However, there is one big caveat: the selector function f must be defined
without any knowledge of α: otherwise we can simply pick a subsequence
of all 0’s or all 1’s.

Now suppose we have a countable system of Auswahlregeln and our
sequence passes all these tests. In other words, for all f we have

D(αf ) = 1/2.

Then α is Mises-random. One can show that for any countable collection
of Auswahlregeln there are always uncountably many sequences that are
random in this sense.

Sounds all eminently reasonable.



Ville’s Counterexample 26

Unfortunately, in 1939 J. Ville showed that for any countable system of
Auswahlregeln there is always a sequence α that passes all the tests (i.e.,
the limiting density is 1/2 for all these subsequences) but that is
nonetheless biased towards 1.

More precisely, it was known that a random sequence should have

lim sup
n

√
2n

log log n

(
D(α, n)− 1/2

)
= 1

lim inf
n

√
2n

log log n

(
D(α, n)− 1/2

)
= −1

and Ville’s example violated the second condition.



Now What? 27

There are excellent definitions of randomness based on better tests.
Instead of Auswahlregeln one uses tests with foundations in

computability theory, and

topology.

The most famous one is due to Per Martin-Löf (who has also done
groundbreaking work in type theory).

Following Weinberg’s proud example, we will forgo this opportunity to
inflict mental pain and anguish on the student body, and skip over the
definition.



Randomness versus Computation 28

Unfortunately, all definitions of randomness have one unpleasant
side-effect: random sequences are not computable.

This is not a big surprise: computable means predictable, and we want
exactly he opposite.

Anyone attempting to produce random numbers by purely
arithmetic means is, of course, in a state of sin.

John von Neumann

Mike Pence will object, but we have no problem with sin.



� Randomness

2 Probability Theory



Discrete versus Continuous 30

Discrete Probability

• Finite spaces: Really a matter of combinatorial counting, though
sometimes it is easier to argue in terms of probability.

• Countably infinite spaces: Deals with infinite spaces and infinite
summations, but everything remains civilized.

Continuous Probability
Uncountable spaces, really a part of measure theory, and annoyingly
dependent on set theory. All hell breaks loose.



Kolmogorov Axioms 31

The collection of all possible outcomes of an experiment is called a
sample space Ω and its elements are the elementary events or atomic
events. A (compound) event is a subset of Ω.

We want to associate a probability for the occurrence of each event, a
map

Pr : P(Ω)→ R

0 ≤ Pr[A]

Pr[Ω] = 1

A ∩B = ∅ implies Pr[A ∪B] = Pr[A] + Pr[B]



What Could Go Wrong? 32

Discrete probability is pretty safe, but consider the following continuous
problem: we would like to measure the area of regions in Euclidean
space, something like µ(A) where A ⊆ Rd.

This is closely related to probability theory: think about an experiment
like throwing a dart at the unit square. What is the probability that the
dart ends up in the region A below?

Clearly we need to determine
µ(A).



A Wishlist 33

For simplicity, consider d = 2.

Norm We want µ(R) = ab whenever R is an a× b rectangle.

Additivity (finite) If A = A1 ∪ . . . ∪An then µ(A) ≤
∑
µ(Ai).

We have equality when the Ai are disjoint.

Additivity (countable) If A =
⋃
i≥0Ai then µ(A) ≤

∑
µ(Ai).

We have equality when the Ai are disjoint.

Invariance If B is congruent to A, then µ(A) = µ(B).



Exclusive Events 34

The condition Ai ∩Aj for i < j means that the events are mutually
exclusive.

No one doubts finite
additivity, but countable
additivity is also really quite
natural: think about dividing
the unit square into
rectangles of size 2−n.



Lebesgue Measure 35

The now standard answer to the design of such a measure was given by
Henri Lebesgue in 1902 in his dissertation: to measure a region A,
approximate it by lots of rectangles (but in a non-obvious way).



No Luck 36

Theorem (Vitali 1905)

There are non-measurable sets of reals.

This requires a little group theory and the Axiom of Choice. On the other
hand, Solovay has constructed universes where all sets of reals are
measurable.

On the upside, there are finitely additive measures for d = 1, 2.
Unfortunately, they fail to be unique.

Theorem (Hausdorff)

No finitely additive measures exist for d > 2.



Now What? 37

The solution is quite natural: who cares about P(Rd)?

The full power set is a weird monstrosity anyway, so why not restrict the
measure to civilized subsets?

The standard choice is Borel sets, sets that can be constructed from open
sets by complements and countably unions. The Lebesgue measure works
fine for Borel sets.

As a practical matter, you will never encounter a subset of Rd that is not
Borel (unless you are a logician and thrive on other people’s misery).

https://en.wikipedia.org/wiki/Borel_set


The Real World 38

Nowadays, CAS can automatically compute fairly complicated measures.



Even Symbolic 39



Discrete Spaces 40

In the countably infinite case we have basic probabilities (pa)a∈Ω such
that

∑
a pa = 1.

As a consequence, we can can compute
∑
a∈A pa for any A ⊆ Ω.

In fact, we can decompose everything into atomic events:

Pr[A] =
∑
a∈A

Pr[{a}]

This fails miserably for uncountable spaces where Pr[{a}] = 0.



Back to Kolmogorov 41

In the Kolmogorov setup, ∅ is the impossible event, and Ω the certain
event, with probabilities 0 and 1, respectively.

The axioms have several easy consequences.

0 ≤ Pr[A] ≤ 1.

Pr[A] = 1− Pr[A].

A ⊆ B implies Pr[A] ≤ Pr[B].

The third axiom states additivity for two sets. By induction we
immediately get full finite additivity: for any finite family of mutually
exclusive events

Pr[A1 ∪A2 ∪ . . . ∪Ak] = Pr[A1] + Pr[A2] + . . .+ Pr[Ak].



More 42

How about general unions?

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]

The last equation generalizes to unions of more than two terms, but is a
bit clumsy to state (see the inclusion-exclusion principle in
combinatorics).

Bode’s Inequality:

Pr[A1 ∪A2 ∪ . . . ∪Ak] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[Ak].

Bonferroni’s Inequality:

Pr[A1 ∩A2 ∩ . . . ∩Ak] ≥ Pr[A1] + Pr[A2] + . . .+ Pr[Ak]− (k − 1).



Frequencies 43

In the discrete case, we only need to determine the elementary
probabilities Pr[{a}] for all a ∈ Ω.

One possibility is to axiomatically claim certain values. For example, for a
finite space Ω we might declare uniform probabilities

Pr[{a}] = 1/|Ω|

Or we could try to measure them by repeating an experiment (often) and
determining frequencies:

Pr[{a}] =
# successes

# trials



Conditional Probability 44

Often one has additional information about the state of affairs that can
affect the probability of some event A.

This is captured by the notion of conditional probability: suppose
Pr[B] > 0 and set

Pr[A | B] = Pr[A ∩B]/Pr[B]

Sometimes one can partition Ω into exclusive events B1, . . . , Bk. Then
we have

Pr[A] =
∑

Pr[A ∩Bi] =
∑

Pr[A | Bi] Pr[Bi]

The case k = 2 is often useful.



Independence 45

Here is the opposite idea: two events A and B are independent iff
knowledge of one provides no information about the other.

Pr[A ∩B] = Pr[A] · Pr[B]

Exercise

Suppose A and B are independent. Show that A, B; A, B and A, B are
all independent.



Random Variables 46

Experiments are often associated with some numerical quantity, which
depends on random outcomes: these thingies are random variables and
defined as maps

X : Ω→ R

Technically, in the continuous case we also need measurability of
X−1(R≥r), but we won’t worry.

The discrete case is always fine and it makes sense to talk about the
probability distribution or probability mass function

p(a) = Pr[X = a]



Why Reals? 47

Sometimes one would like to associate outcomes other than reals with an
experiment, our definition of a random variable does not allow that. The
reason is that reals are just too convenient. For example, nothing stops
us from computing

5X2(a) + 3X(a)− 17

Or we could add RVs X(a) + Y (a) and so on.

This will come in very handy.



Indicator Variables 48

We can fake other properties by choosing our random variables
appropriately.

For example, suppose we only care whether a ∈ A. This can be captured
by an indicator variable

X(a) =

{
1 if a ∈ A,

0 otherwise.



Continuous Distributions 49

For continuous spaces we can still talk about the cumulative distribution
function:

p(a) = Pr[X ≤ a]

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1.0



Jumps 50

In the discrete case, the cdfs increase in steps.
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In 3-D 51



Expectation 52

Suppose we have a discrete random variable X with pmf p(a).

The expected value or expectation of X is

E[X] =
∑

X(a) · p(a)

This is often abbreviated in slightly criminal manner to µ.

So expectation is a weighted sum, and corresponds to the intuitive notion
of average.

Lemma

Expectation is linear in the sense that

E[aX + bY ] = aE[X] + bE[Y ]

where a and b are real constants.



Variance 53

Other than the average it is also useful to now how far off the values of a
random variable might be, on average.

The variance of X is

Var[X] = E[(X − µ)2]

This is often written as σ2 (where σ is the standard deviation).

In other words,
Var[X] = E[X2]− E[X]2.



Rules for Variance 54

Lemma

Var[aX + b] = a2Var[X].

Lemma

Assume that X and Y are independent. Then variance is additive in the
sense that

Var[X + Y ] = Var[X] + Var[Y ].

Incidentally, for independent variables we have
Var[XY ] = Var[X] · Var[Y ].



Chebyshev 55

Lemma (Chebyshev’s Inequality)

Suppose X has finite expectation µ and non-zero variance σ2. Then

Pr[|X − µ| ≥ c] ≤ σ2/c2.



Uniform Distribution 56

A continuous variable X is uniformly distributed if for some interval
[a, b] ⊆ R we have the pdf

f(x) =

{
1/(b− a) if a ≤ x ≤ b,
0 otherwise.

E[X] = (a+ b)/2

Var[X] = (b− a)2/12



Finite Case 57

For a finite space Ω we similarly have

Pr[X = a] = 1/|Ω|

Just think about coins or dice.

Dire Warning: this does not work for countably infinite spaces.



Bernoulli 58

This is the distribution of an indicator variable with

Pr[X = 1] = p

E[X] = p

Var[X] = p(1− p)



Binomial 59

Define an indicator variable Xi that is 1 if the ith repetition produces the
event, and 0 otherwise and consider X = X1 +X2 + . . .+Xn. If the
probability of Xi is p then

Pr[X = k] =

(
n

k

)
pk(1− p)n−k

E[X] = np

Var[X] = np(1− p)



Geometric 60

If we count the number of times till heads appear we get a random
variable X such that

Pr[X = k] = p(1− p)k−1

E[X] = 1/p

Var[X] = (1− p)/p2



Normal 61

Parameters µ and σ.

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2)

E[X] = µ

Var[X] = σ2



Bell Curve 62
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Experiments 63
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A lot of people spend a lot of time trying to match outcomes of
experiments against a normal distribution.
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