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Randomness and Computer Science

Statistics via Sampling

Population: 300m Random sample size: 2000

Theorem: 



Randomized Algorithms
Dimer Problem:
Given a region, in how many different ways can you tile it
with 2x1 rectangles (dominoes)? 

Captures thermodynamic properties of matter.

- Fast randomized algs can approximately count.

- No fast deterministic alg known.

1024 tilings
e.g.

Distributed Computing

Nash Equilibria in Games

The Chicken Game

Swerve

Straight

Swerve Straight

1 1

2 0 -3-3

0 2

Theorem (Nash): 



Cryptography

“I will cut your throat”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

encryption

“I will cut your throat”

decryption

Adversary
Eavesdropper

Shannon: 

Error-Correcting Codes

Alice Bob

“bit.ly/vrxUBN”

Each symbol can be corrupted with a certain probability.

How can Alice still get the message across?

noisy channel

Communication Complexity

Want to check if the contents of two databases are
exactly the same.

How many bits need to be communicated?



Quantum Computing

Probability Theory:
The CS Approach

The Big Picture

Real World

(random) 
experiment/process probability space

Mathematical Model

The Non-CS Approach



The Big Picture

Real World Mathematical Model

Flip a coin.
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    = “sample space”
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    = set of all possible outcomes

Pr : ⌦ ! [0, 1] prob. distribution

The Big Picture

Real World Mathematical Model
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Flip two coins.

The Big Picture

Real World Mathematical Model

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.

⌦

?



The Big Picture

The CS Approach

The Big Picture

flip <— Bernoulli(1/2)
if flip = 1: # i.e. Heads
    die <— RandInt(3)
else:
    die <— RandInt(4)

Flip a coin. 
If it is Heads, throw 
a 3-sided die. 
If it is Tails, throw a 
4-sided die.

Probability Tree

Bernoulli(1/2)

RandInt(3) RandInt(4)

flip <— Bernoulli(1/2)
if flip = H:
    die <— RandInt(3)
else:
    die <— RandInt(4)

Outcomes:

Prob:

H T
1/2 1/2

1 2 3
1/3 1/3 1/3

1 2 3 4
1/4 1/4 1/4 1/4

(H,1) (H,2) (H,3) (T,1) (T,2) (T,3) (T,4)

1/6 1/6 1/6 1/8 1/8 1/8 1/8



What is a Random Variable?

A random variable is a variable in some randomized code
(more accurately, the variable’s value at the end of the execution)

of type ‘real number’.

Example:

S <— RandInt(6) + RandInt(6)
if S = 12:   I <— 1
else:           I <— 0

Random variables:

What is a Random Variable?
S <— RandInt(6) + RandInt(6)
if S = 12:   I <— 1
else:           I <— 0

S =
I =

S =
I =

S =
I =

S =
I =

RandInt(6)

RandInt(6) … RandInt(6) RandInt(6)…

(1,1) (1,6)(1,4) (2,5) (6,6)… … … … … …… (6,1)

S =
I =

S =
I =

New Topic:

Randomized Algorithms



Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

(i) the input can be chosen randomly 
    

(ii) the algorithm can make random choices
    

Which one will we focus on?

Randomness and algorithms

A randomized algorithm is an algorithm that is allowed to 
“flip a coin” (i.e., has access to random bits).

What is a randomized algorithm?

In 15-251:
A randomized algorithm is an algorithm that is allowed 
to call:

Deterministic vs Randomized

For any fixed input (e.g. x = 3):

def A(x): 
     y = 1 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Deterministic

- the output 

- the running time

- the output 

- the running time

def A(x): 
     y = Bernoulli(0.5) 
     if(y == 0): 
          while(x > 0): 
               x = x - 1 
     return x+y

Randomized



Deterministic vs Randomized

- correctness:                

- running time:                        

A deterministic algorithm      computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

Note:  we require worst-case guarantees for
           correctness and run-time.

8x 2 ⌃⇤, A(x) = f(x) .

# steps A(x) takes is  T (|x|).8x 2 ⌃⇤,

Deterministic vs Randomized

A randomized algorithm       computes     
in time              means:

A f : ⌃⇤ ! ⌃⇤

T (n)

- correctness:                 ,                      

- running time:              ,         

8x 2 ⌃⇤

8x 2 ⌃⇤

A Try

Is this interesting?

Deterministic

Type 1

Type 2

Correctness Run-time

Type 3

Randomized

Type 0

Type 0: 

Type 1: 

Type 2: 

Type 3: 

8x 2 ⌃⇤



Example

Input:   An array B with  n/4  1’s  and  3n/4  0’s.

Output:   An index that contains a 1.

Deterministic Randomized
Type 1 (Monte Carlo) Type 2 (Las Vegas)

Example

Deterministic

Monte Carlo

Las Vegas

Correctness Run-time

Input:   An array B with  n/4  1’s  and  3n/4  0’s.

Output:   An index that contains a 1.

Formal Definitions



Formal Definition:  Deterministic 

8x 2 ⌃⇤, # steps A(x) takes is  T (|x|).

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that deterministic algorithm      
computes      in time           if:

A
T (n)f

8x 2 ⌃⇤, A(x) = f(x)

Each input     induces
a deterministic path.

x

Deterministic:x

0

Picture:

Formal Definition:  Monte Carlo 

8x 2 ⌃⇤,

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Monte Carlo algorithm for 
with     error probability if:

A
T (n) f
✏

8x 2 ⌃⇤,



Each input     induces
a probability tree.

x

Monte Carlo:

Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

01

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

Picture:

Formal Definition:  Las Vegas 

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Las Vegas algorithm for     if:

A
T (n) f

8x 2 ⌃⇤,

8x 2 ⌃⇤,

Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

Each input     induces
a probability tree.

x

Las Vegas:

0

0

Picture:



Examples

3 IMPORTANT PROBLEMS

Integer Factorization
Input:  integer N

Ouput:  a prime factor of N

isPrime
Input:  integer N

Ouput:  True if N is prime.

Generating a random n-bit prime
Input:  integer n

Ouput:  a random n-bit prime

We should be able to do efficiently the following:

- check if a given number is prime.

- generate a random prime.

We should not be able to do efficiently the following:

- given N,  find P and Q.

Most crypto systems start like:
- pick two random n-bit primes P and Q.

- let  N = PQ.   (N is some kind of a “key”)

- (more steps…)

(the system is broken if we can do this!!!)



isPrime
def isPrime(N):
    if (N < 2):  return False
    maxFactor = round(N**0.5)
    for factor in range(2, maxFactor+1):
        if (N % factor == 0):  return False
    return True

Problems:

isPrime
Amazing result from 2002:

There is a poly-time algorithm for isPrime.

Agrawal,  Kayal,      Saxena

However, best known implementation is ~           time. O(n6)

Not feasible when                 .n = 2048

isPrime
So that’s not what we use in practice.

The running time is:           

Everyone uses the Miller-Rabin algorithm (1975).

Why is the previous result a breakthrough?



Generating a random prime
repeat: 
    let N be a random n-bit number 
    if isPrime(N): return N

Prime Number Theorem (informal):

=) expected run-time of the above algorithm:

No poly-time deterministic algorithm is known
to generate an  n-bit  prime!!!


