

CASE STUDY

Randomized Algorithms for Cut Problems

Cut Problems

Max Cut Problem:

Given a connected graph G = (V, E), color the vertices **red** and **blue** so that the number of edges with two colors (e = {**u**,**v**}) is maximized.

Cut Problems

Most Useful Equality in Probability Theory:	

Most Useful Type of Random Variable:	
Event —> Random Variable	

High Level Idea
Want to compute $E[X]$:
Write $oldsymbol{X} = oldsymbol{I}_1 + oldsymbol{I}_2 + \dots + oldsymbol{I}_n$. (sum of indicator r.v.'s)
Then

Approximation Alg. for Max Cut	

Contraction algorithm for min cut

Observation:

For any i: A cut in G_i of size k corresponds exactly to a cut in G of size k.

Contraction algorithm for min cut

Theorem:

Let G = (V, E) be a graph with n vertices. The probability that the contraction algorithm will output a min-cut is $\geq 1/n^2$.

Should we be impressed?

- The algorithm runs in polynomial time.
- There are exponentially many cuts. ($\approx 2^n$)

Pre-proof Poll

Let k be the size of a minimum cut. Which of the following are true (can select more than one): For $G = G_0$, $k \leq \min_v \deg_G(v)$ $(\forall v, k \leq \deg_G(v))$ For $G = G_0$, $k \geq \min_v \deg_G(v)$ For every G_i , $k \leq \min_v \deg_{G_i}(v)$ $(\forall v, k \leq \deg_{G_i}(v))$ For every G_i , $k \geq \min_v \deg_{G_i}(v)$

Proof of theorem

Proof of theorem	

Proof of theorem	

Proof of theorem

G

 F_1

Boosting phase
What is the relation between t and success probability?
Let A_i = "in the i'th repetition, we don't find a min cut."
$\Pr[\text{error}] = \Pr[\text{don't find a min cut}]$

Boosting phase

$$\Pr[\text{error}] \le \left(1 - \frac{1}{n^2}\right)^t$$

Boosting phase		
$\Pr[\text{error}] \le \left(1 - \frac{1}{n^2}\right)^t$		
World's most useful inequality:	$\forall x \in \mathbb{R}: \ 1 + x \le e^x$	
Let $x = -1/n^2$		
$\Pr[\text{error}] \le (1+x)^t$		

Important Note

Boosting is not specific to Min-cut algorithm.

We can boost the success probability of Monte Carlo algorithms via repeated trials.

Final remarks Randomness adds an interesting dimension to computation. Randomized algorithms can be faster and more elegant than their deterministic counterparts. There are some interesting problems for which: • there is a poly-time randomized algorithm, • we can't find a poly-time deterministic algorithm.