
GTI
Descriptive Complexity

A. Ada & K. Sutner

Carnegie Mellon Universality

Spring 2018

1 Descriptive Complexity

� Words as Structures

� Existential SOL

Classical Complexity 3

So far, we have used time complexity (sometimes in conjunction with
nondeterminism and randomness) to get results on the complexity of certain
computational problems.

Running time (or really: number of logical steps) is a very natural notion, but
it annoyingly depends on details of the underlying computational model.

Turing machines, register machines, random access machines,
while programs, recursive functions, Herbrand-Gödel equations,
λ-calculus, combinatory logic, Markov algorithms, Post systems
. . .

The Zoo 4

Robustness 5

Truly interesting concepts always have multiple definitions and
are fairly robust under minor changes.
If there are no alternative approaches, then we are probably deal-
ing with an artifact.

For example, computability admits at least a dozen substantially different
definitions.

One might wonder whether complexity classes like P or NP admit some
radically different definition that does not just come down to counting steps in
some model of computation. In other words: find an alternative way to define
these classes that does not depend on accidents of beancounting.

Logic to the Rescue 6

One way to separate oneself from vexing definitional details of machine models
is to recast everything in terms of logic.

The main idea is the following: measure the complexity of a problem by the
complexity of the logic that is necessary to express it. In other words, write
down a careful description of your problem in a as weak a formal system as you
can manage, and declare the complexity of the problem to be the complexity of
that system.

This is in stark contrast to the standard approach where everything is coded up
in Peano arithmetic or Zermelo-Fraenkel set theory (typically using first-order
logic): these are both sledge hammers, very convenient and powerful, but not
subtle.

What’s Logic? 7

A logic or logical system has the following parts:

a formal language (syntax)

a class of structures (semantics)

a notion of proof

effectiveness requirements

The effectiveness requirements depend a bit on the system in question,
minimally we would want that it is decidable whether a string is a formula.
Also, it should be decidable whether an object is a valid proof (this says
nothing about proof search).

At any rate, we are here mostly interested in syntax and semantics.

Typical Examples 8

propositional logic

equational logic

first-order logic

higher-order logic

These are all hugely important. Note, though, that higher-order logic tends to
drift off into set-theory land: quantifying over sets and functions is a radical
step that introduces a host of difficulties.

Nowadays, first-order logic is the general workhorse in math and ToC.

Aside: Bad Syntax 9

Q(y)

P (x, y)

Q(x)

b a Q(a)

P (b, a)

Q(b)

Q(y)

P (x, y)

a Q(a)

P (x, a)

It may seem that syntax questions are trivial, but just take a look at Frege’s
system in his Begriffsschrift.

Example: Propositional Logic 10

⊥, > constants false, true

p, q, r, . . . propositional variables

¬ not

∧ and, conjunction

∨ or, disjunction

⇒ conditional (implies)

Negation is unary, all the others a binary.

A “structure” here is just an assignment of truth values to variables, an
assignment or valuation

σ : Var→ 2

Recall: Levin-Cook 11

We have seen that an accepting computation of a polynomial time Turing
machine M can be translated into a question of whether a certain Boolean
formula ΦM has a satisfying truth assignment.

The trick is to use lot and lots of Boolean variables to code up the whole
computation.

One might wonder whether a more expressive logic would produce other
interesting arguments along these lines: translate a machine into an
“equivalent” formula.

We’ll do this for finite state machines, and then again for Turing machines.

Too Awkward 12

The main problem with propositional logic is that our translation from Turing
machines is quite heavy-handed; in particular it has little to do with they way a
computation of a TM would be defined ordinarily.

More promising seems a system like first-order logic which serves as the
standard workhorse in much of math and CS.

To wit, what is generally considered to be a “math proof” is an argument in
FOL. Instead of defining the syntax and proof theory, let’s just look at the
corresponding structures.

FO Structures 13

Definition

A (first order) structure is a set together with a collection of functions and
relations on that set. The signature of a first order structure is the list of arities
of its functions and relations.

In order to interpret a formula we need something like

A = 〈A; f1, f2, . . . , R1, R2, . . . 〉

The set A is the carrier set of the structure.

We have fi : Ani → A and Ri ⊆ Ami .

Abstract Data Types 14

Note that a first order structure is not all that different from a data type. To
wit, we are dealing with a

collection of objects,

operations on these objects, and

relations on these objects.

In the case where the carrier set is finite (actually, finite and small) we can in
fact represent the whole FO structure by a suitable data structure (for example,
explicit lookup tables). For infinite carrier sets, things are a bit more
complicated.

Data types (or rather, their values) are manipulated in programs, we are here
interested in describing properties of structures using the machinery of FOL.

� Descriptive Complexity

2 Words as Structures

� Existential SOL

Words as Structures 16

We code everything as words over some alphabet.

Wild Idea: Can we think of a single word as a structure?

And, of course, use logic to describe the properties of the word/structure?

This may seem a bit weird, but bear with me. First, we need to fix an
appropriate language for our logic.

As always, we want at least propositional logic: logical not, or and, and so
forth.

Variables and Atomic Formulae 17

We will have variables x, y, z, . . . that range over positions in a word, integers
in the range 1 through n where n is the length of the word.

We allow the following basic predicates between variables:

x < y x = y

Of course, we can get, say, x ≥ y by Boolean operations.

Most importantly, we write

Qa(x)

for “there is a letter a in position x.”

First-Order 18

We allow quantification for position variables.

∃xϕ ∀xϕ

For example, the formula

∃x, y (x < y ∧Qa(x) ∧Qb(y))

intuitively means “somewhere there is an a and somewhere, to the right of it,
there is a b.”

The formula
∀x, y (Qa(x) ∧Qb(y) ⇒ x < y)

intuitively means “all the a’s come before all the b’s.”

Semantics 19

We need some notion of truth

w |= ϕ

where w is a word and ϕ a sentence in MSO[<].

We won’t give a formal definition, but the basic idea is simple: Let |w| = n:

the variables range over [n] = {1, 2, . . . , n},

x < y means: position x is to the left of position y ,

x = y: well . . . ,

for the Qa(x) predicate we let

Qa(x) ⇐⇒ wx = a

Examples 20

aaacbbb |= ∀x (Qa(x) ∨Qb(x) ∨Qc(x))

aaabbb |= ∃x, y (x < y ∧Qa(x) ∧Qb(y))

bbbaaa 6|= ∃x, y (x < y ∧Qa(x) ∧Qb(y))

aaabbb |= ∃x, y (x < y ∧ ¬∃ z (x < z ∧ z < y) ∧Qa(x) ∧Qb(y))

aaacbbb 6|= ∃x, y (x < y ∧ ¬∃ z (x < z ∧ z < y) ∧Qa(x) ∧Qb(y))

aaacbbb |= ∃x (Qc(x) ⇒ ∀ y (x < y ⇒ Qb(y)))

The Language of a Sentence 21

Very good, but recall that we not really interested in single words, we want
languages, sets of words. No problem, for any sentence ϕ, we can consider the
collection of all words that satisfy ϕ:

L(ϕ) = {w ∈ Σ? | w |= ϕ }.

So our key idea is that the “complexity” of L(ϕ) is just the complexity of the
formula ϕ.

More precisely, if we have that the right logic will produce interesting
collections of languages.

Factors and Subwords 22

Example

In first-order logic, we can hardwire factors. For example, to obtain a factor abc
let

ϕ ≡ ∃x, y, z (y = x+ 1 ∧ z = y + 1 ∧Qa(x) ∧Qb(y) ∧Qc(z))

Then w |= ϕ iff w ∈ Σ?abcΣ?.

You might object to the use of “y = x+ 1” which is not part of our language.
No worries, it’s just an abbreviation:

y = x+ 1 ⇐⇒ x < y ∧ ∀ z (x < z ⇒ y ≤ z)

This is quite typical: one defines a small language that is easy to handle, and
then boosts usability by adding abbreviations.

More 23

Example

Instead of factors we can similarly get (scattered) subwords by dropping the
adjacency condition for the positions:

ϕ ≡ ∃x, y, z (x < y ∧ y < z ∧Qa(x) ∧Qb(y) ∧Qc(z))

Then w |= ϕ iff w ∈ Σ?aΣ?bΣ?cΣ?.

You might feel that this is a complicated formula for a simple concepts, but
note that the analogous formula ϕu for a subword u has length |u| and is trivial
to construct.

The Machine 24

0 1 2 3
a b c

Σ Σ Σ Σ

The natural (nondeterministic) automaton is quite similar to the formula.

Some Stars 25

Example

We can split a word into two parts as in

ϕ ≡ ∃x∀ y ((y ≤ x ⇒ Qa(y)) ∧ (y > x ⇒ Qb(y))) ∨ ∀x (Qb(x))

Then w |= ϕ iff w ∈ a?b?.

Example

Let first(x) be shorthand for ∀ z (x ≤ z), and last(x) shorthand for ∀ z (x ≥ z).
Then

ϕ ≡ ∃x, y (first(x) ∧Qa(x) ∧ last(y) ∧Qb(y))

Then w |= ϕ iff w ∈ aΣ?b.

Looks Regular 26

One cannot fail to notice that all the languages L(ϕ) we have seen so far are in
fact regular.

If you are the kind of person that jumps to conclusion you might suspect that
we get exactly the regular language from our little logic.

Alas, consider the language

Le,e = {x ∈ {a, b}? | #ax,#bx even }

This language has a trivial 4-state DFA, but building a corresponding formula
ϕ seems impossible. Try.

Even/Even 27

4 3

1 2

a

a

a

a

b

b

b

b
ϕ =??????

Monadic Second-Order Logic (MSOL) 28

This and other examples lead one to suspect that first-order logic is a bit too
weak to produce all regular languages.

In logic, if FOL does not work, one turns to second order logic. In our case, it
turns out we need only a weak subsystem where second-order quantification is
restricted to just two kinds:

individuals, and

sets of individuals (relations of type R1).

Notation:

∃X ∀X

x ∈ X X(x)

Example: Least Upper Bounds 29

Let’s ignore words for a moment, and just try to get an idea what kinds of
concepts one can express in MSO.

Assuming a total order ≤, we can express the assertion that every bounded set
has a least upper bound:

∀X
(
∃ z X(z) ∧ ∃x∀ z (X(z) ⇒ z ≤ x) ⇒

∃x (∀ z (X(z) ⇒ z ≤ x) ∧ ∀ y (∀ z (X(z) ⇒ z ≤ y) ⇒ x ≤ y))
)

This is the critical property of the standard order on the reals, and cannot be
expressed in FOL.

Example: Well-Order 30

Again assume a total order ≤. We can express the assertion that we have a
well-order in terms of the least-element principle: every non-empty set has a
least element.

∀X
(
∃ z X(z) ⇒

∃x (X(x) ∧ ∀ z (X(z) ⇒ x ≤ z)
)

This is the critical property of the natural numbers with the standard order,
and cannot be expressed in FOL.

Example: Reachability 31

Lastly, consider a digraph, a single binary edge relation E.

We can express the assertion that there is a path from s to t as follows:

∀X
(
X(s) ∧ ∀x, y (X(x) ∧ E(x, y) ⇒ X(y)) ⇒ X(t)

)

Again, FOL is not strong enough to express path existence in general (and thus
other concepts like connectivity).

MSO for Words 32

We allow second-order variables X, Y , Z, . . . that range over sets of positions
in a word.

∃X ϕ ∀X ϕ X(x)

Sets of positions are all there is; we do not have variables in our language for,
say, binary relations on positions (we do not use full SOL).

This system is called monadic second-order logic (with less-than), written
MSO[<].

Less-Than or Successor 33

In applications, the atomic relation x < y is slightly more useful than
y = x+ 1, but either one would have the same expressiveness.

We have already seen

y = x+ 1 ⇐⇒ x < y ∧ ∀ z (x < z ⇒ y ≤ z)

On the other hand write closed(X) for the formula ∀ z (X(z) ⇒ X(z + 1)).
Then

x < y ⇐⇒ x 6= y ∧ ∀X (X(x) ∧ closed(X) ⇒ X(y))

This is sometimes written as MSO[<] = MSO[+1].

Counting 34

Suppose we want at least three a’s.

∃x, y, z (x < y < z ∧Qa(x) ∧Qa(y) ∧Qa(z))

And at most three a’s.

∃x, y, z ∀u (Qa(u) ⇒ u = x ∨ u = y ∨ u = z)

Exactly three is now obtained by conjunction, much easier than a product
operation on finite state machines.

Even/Even 35

Example

Write even(X) to mean that X has even cardinality and consider

ϕ ≡ ∃X
(
∀x (Qa(x) ⇐⇒ X(x)) ∧ even(X)

)

Then w |= ϕ iff the number of a’s in w is even.

We’re cheating, of course; we need to show that the predicate even(X) is
definable in our setting. This is tedious but not really hard:

even(X) ⇐⇒ ∃Y,Z (X = Y ∪ Z ∧ ∅ = Y ∩ Z ∧ alt(Y,Z))

Here alt(Y,Z) is supposed to express that the elements of Y and Z strictly
alternate as in

y1 < z1 < y2 < z2 < . . . < yk < zk

Missing Pieces 36

X = Y ∪ Z ⇐⇒ ∀u (X(u) ⇔ Y (u) ∨ Z(u))

∅ = Y ∩ Z ⇐⇒ ¬∃u (Y (u) ∧ Z(u))

alt(Y,Z) ⇐⇒ ∃ y ∈ Y ∀x < y (¬Z(x))∧

∃ z ∈ Z ∀x > z (¬Y (x))∧

∀ y ∈ Y ∃ z ∈ Z (y < z ∧ ∀x (y < x < z ⇒ ¬Y (x) ∧ ¬Z(x)))

∀ z ∈ Z ∃ y ∈ Y (y < z ∧ ∀x (y < x < z ⇒ ¬Y (x) ∧ ¬Z(x)))

Exercise

The alt formula above does not handle the case where Y and Z are empty; fix
this.

Show that one can check if the number of a’s is a multiple of k, for any fixed k.

The Link 37

Definition

A language L is MSO[<] definable (or simply MSO[<]) if there is some
sentence ϕ such that

L = L(ϕ) = {w ∈ Σ? | w |= ϕ }.

Our examples suggest the following theorem that connects complexity with
definability:

Theorem (Buechi 1960, Elgot 1961)

A language is regular if, and only if, it is MSO[<] definable.

Formula to Regular (Sketch) 38

Obviously, the proof comes in two parts:

For every regular language L we need to construct a sentence ϕ such that
L = L(ϕ).

For every sentence ϕ we have to show that the language L(ϕ) is regular.

We should expect part (1) to be harder since there is no good inductive
structure to exploit.

Part (2) is by straightforward induction on ϕ, but there is the usual technical
twist: we need to deal not just with sentences but also with free variables.
Since we don’t have a formal semantics we will not give details of this
construction.

Regular to Formula (Sketch) 39

We may safely assume that the regular language L is given by a DFA
M = 〈Q,Σ, δ; q0, F 〉 .

For simplicity assume Q = [n] and q0 = 1.

We have to construct a formula ϕ such that w |= ϕ iff M accepts w.

Consider a trace of M on input w

q0 w1 q1 w2 q2 . . . qm−1 wm qm.

Here m can be arbitrarily large.

We can think of states as being associated with the letters of the word as in

w1 w2 w3 . . . wm
q0 q1 q2 q3 . . . qm

Thus, position x = 1, . . . ,m in the word is associated with state
δ(q0, w1 . . . wx).

The Partition 40

In order to express this in a MSO[<] formula, we partition the set of positions
[m] into n = |Q| blocks X1, X2, . . . , Xn such that

Xp(x) ⇐⇒ δ(q0, w1 . . . wx) = p

Some of these blocks may be empty, but note that the number of blocks is
always exactly n (which we can express as a formula).

But given state p in position x we can determine the state in position x+ 1
given wx+1 by a table lookup – which table lookup can be hardwired in a
formula.

Expressing Transitions 41

Technically, this is done by a formula

Φp,a ≡ ∀x
(
Xp(x) ∧Qa(x+ 1) ⇒ Xδ(p,a)(x+ 1)

)

meaning “if at position x we are in state p and the next letter is an a, then the
state in position x+ 1 is δ(p, a).

Note that this is not quite right, we really need a non-existing position 0
corresponding to state q0.

Exercise

Figure out how to fix this little glitch. Also figure out how to express “the last
state is final.”

Expressing Transitions 42

Now consider the big conjunction of Φp,a where p ∈ Q and a ∈ Σ. Add
formulae that pin down the first and last state to arrive at a formula of the form

ϕ ≡ ∃X1, . . . , Xn Ψ

where Ψ is first-order as indicated above. 2

Note that in conjunction with the opposite direction of Büchi’s theorem, this
result has the surprising consequence that every MSO[<] formula is equivalent
to a MSO[<] formula containing only one block of existential second-order
quantifiers.

Exercise

Fill in all the details in the last proof.

And First-Order? 43

Inquisitive minds will want to know what happened to plain first-order logic? It
must correspond to some subset of regular, but is there any meaningful
characterization of the languages definable by FO formulae?

A language L ⊆ Σ? is star-free iff it can be generated from ∅ and the
singletons {a}, a ∈ Σ, using only operations union, concatenation and
complement (but not Kleene star).

Note well: a?b?a? is star-free.

Theorem

A language L ⊆ Σ? is FOL[<] definable if, and only if, L is star-free.

� Descriptive Complexity

� Words as Structures

3 Existential SOL

Back to Complexity 45

Regular and star-free are nice, but nowhere near where we want to be. How do
we get an alternative description of a complexity class like NP?

We need a stronger logic to get up there. Our goal is to establish the following
result.

Theorem (Fagin 1974)

The complexity class NP corresponds to existential second-order logic.

Quoi? 46

We will write existential SOL as ∃SO.

∃SO means we are considering formulae of the kind

∃X1, X2, . . . , Xk ϕ

where ϕ is first-order: there are no second-order quantifiers other than the
existential ones up front.

But now the Xi need not be monadic, in particular we will be allowed to
quantify over k-ary relations: ∃Xk . . . for any k ≥ 1.

∃SO over Arbitrary Structures 47

So far, we have focused on word structures, but it is not hard to generalize to
other combinatorial objects such as ugraphs: we need a binary predicate E for
edges.

3-Colorability of a ugraph is easily expressed as a ∃SO formula:

∃X,Y, Z
(
∀u (X(u) ∨ Y (u) ∨ Z(u)) ∧ ∀u, v (E(u, v) ⇒

¬(X(u) ∧X(v)) ∧ ¬(Y (u) ∧ Y (v)) ∧ ¬(Z(u) ∧ Z(v)))
)

Note that this is just the ordinary definition of 3-colorability, written in a formal
notation. There is nothing mysterious going on.

Similar descriptions exist for all our NP problems.

And Backwards? 48

Suppose we have a formula

ψ = ∃X1, X2, . . . , Xk ϕ

where ϕ is first-order.

To check whether ϕ holds we can guess the subsets Xi of the carrier set A,
and then verify in polynomial time that ϕ holds. More precisely, if Xi has arity
k we need to guess a subset of Ak, so we are still within polynomial time. The
first-order quantifiers in ϕ are not a problem either: each just corresponds to a
loop over some finite set.

So testing a ∃SO formula for validity over some structure is in NP.

NP-Hardness of ∃SO 49

Suppose M is some verifier. We want to express the computation of M on
some input x, given some witness w.

For simplicity assume that the running time of M on an input of size n is
N = nk − 1: this allows us to think of both time and space as being written in
k-digit base n numbers.

We can write a configuration in a computation as a word in

Γ? (Γ×Q) Γ?

of length N where Γ is the tape alphabet of M and Q the state set. So the
whole computation C of M is a N ×N table of letters in Γ, augmented in one
place per row by a state.

The Computation 50

In an accepting computation C, the first and the last row look like

q0 x1 . . . xn w1 . . . wm . . .

qY . . .

Here x is the input, and w the corresponding witness.

Since we are dealing with existential sentences, the witness part comes for free:
given input x, we can always write something like

∃W Φ(x,W, . . .)

We’ll just pretend w is part of the input.

Example 51

q0 a b c 0 1 0 1

p
a b c 0 1 0 1

a
p
b

c 0 1 0 1

a b
p
c 0 1 0 1

a b c
p

0 1 0 1

a b c
q
0

1 0 1

a b c
q0 0 1 0 1

A typical initial segment of a computation C of M.

Coding a Computation 52

Recall that time will be expressed as a k-tuple t = t0, t1, . . . , tn−1 of elements
in the carrier set {0, 1, . . . , n− 1}; ditto for space.

Let γ = |Γ×Q ∪Q|.

We use 2k-ary predicates Xg, 1 ≤ g ≤ γ, with the intent that

Xg(s, t) ⇐⇒ C(s, t) = g

We have for example

∀ s, t∃ g Xg(s, t) ∧ ∀ s, t, g, g′
(
Xg(s, t) ∧Xg′(s, t) ⇒ g = g′

)

Row to Row 53

We need to make sure that the entries in the table change only according to
the rules of the Turing machine: for the most part, row k is copied to row
k + 1, but close to the position of the Γ×Q symbol there may be changes.

In essence, we need express the transition function of M as a formula using
assertions such as

Xg(s, t) ∧Xg′(s + 1, t) ⇒ Xh(s, t + 1) ∧Xh′(s + 1, t + 1)

In English, this is something like

If at time t and in position s there is a symbol a and the head is
positioned at s and the state is p, then, at time t+1, in position
s there is symbol a′ and the head has moved one to the right,
and is looking at the same symbol that was in position s+ 1 at
time t.

Whole Formula 54

In the end, the formula will look somewhat like

∃W,X1, . . . , Xγ ∃u ∀v . . .Φ(W,X1, . . . , Xγ ,u,v, . . .)

and this formula will be valid iff the verifier M accepts x together with some
suitable witness w.

The formula is messy, but it is easy to construct given M and x.

Hence we can translate any problem in NP into a corresponding ∃SO formula.

Where Are We? 55

The Büchi/Elgot theorem establishes a connection between regular languages
(aka constant space) and MSO[<1].

Fagin has shown that NP corresponds to existential SOL.

And one can push further:

We defined NP as the class obtained by verifiers using a single existential
witness:

x ∈ L ⇐⇒ ∃u M(x, u) ↓
We could allow more quantifiers as in

x ∈ L ⇐⇒ ∃u ∀ v ∃w . . .M(x, u, v, w, . . .) ↓

getting a classification P, Σp1 = NP, Πp
1 = co-NP, Σp2, Πp

2, . . .

Polynomial Hierarchy 56

The collection of all these problems is known as the polynomial hierarchy and
seems to contain problem much harder than just NP.

For example, the question of whether a circuit has an equivalent circuit using
at most k gates is Σp2.

Alas, we do not know whether PH is a proper hierarchy.

But this much we do know:

PH corresponds to SOL.

PSPACE corresponds to SOL plus a transitive closure operator.

