
Transducers and Rational Relations

A. Anil & K. Sutner

Carnegie Mellon University

Spring 2018

1 Rational Relations

� Properties of Rat

Wisdom 3

The author (along with many
other people) has come recently
to the conclusion that the func-
tions computed by the various
machines are more important–or
at least more basic–than the sets
accepted by these devices.

D. Scott, “Some Definitional
Suggestions for Automata Theory,”
1967

Quoi? 4

Acceptor A machine that checks membership in some language L ⊆ Σ?

(a machine that solves a decision problem).

Transducer A machine that computes a function

f : Σ? → Σ?

or a relation

R ⊆ Σ? × Σ?

We will focus on relations (functions are just a special kind).

Example: Lexicographic Order 5

How do we check whether a word u is lexicographically less than v?

Find the longest common prefix x (so u = xu′ and v = xv′).

Handle the case where u′ = ε or v′ = ε.

Otherwise, compare u′1 and v′1.

Insight: We scan the input once, left-to-right; our decisions require no extra
memory.

This looks just like a DFA, except there are two inputs.

Two-Tape DFA 6

Y

N

ℳ

a b c a a b

b b
a a b a c a

Details? 7

We will not give a careful definition of how a k-tape DFA works and appeal to
your intuition instead. The main idea is to use transitions of the form

p
x/y−→ q

where the labels are in the following form:

a/b and a/ε and ε/b.

You can think of this as the transducer checking for an a on the first tape, and
a b on the second tape.

Or, if you prefer, the machine reads an a and writes a b.

Truth in Advertising 8

For transducers, nondeterminism is really critical: there are no constraints on
these transitions:

p
a/b−→ q and p

a/b−→ q′

is perfectly fine for q 6= q′.

Acceptance means: there is at least one good path leading from the initial
state to a final state that has the right labels.

This is a bit like NP: one good path/witness is enough, all other attempts may
well fail.

Rational Relations 9

So we are trying to come up with a clean definition of the class of rational
relations without using explaining all the gory details of a machine model.

As it turns out, it is surprisingly easy to exploit the algebraic characterization of
regular languages: the closure of ∅ and singletons {a} under concatenation,
union and Kleene star.

Why rational relations rather than regular relations? Historical accident and a
bit of tension between the US and Europe.

Kleene’s Theorem 10

Theorem (Kleene 1956)

Every regular language over Σ can be constructed from ∅ and singletons {a},
a ∈ Σ, using only the operations union, concatenation and Kleene star.

It follows that there is a convenient notation system (regular expressions) for
regular languages that is radically different from finite state machines: we can
use an algebra (albeit a slightly weird one) to concoct regular languages. Read
the grep manual to appreciate the importance of this.

One direction is easy, given the inductive structure of a regular expression and
the closure properties of regular languages we already have: every regular
expression denotes a regular language.

Other Direction 11

The big problem with the other direction is: a finite state machine has no
inductive structure, it’s just a bunch of labeled edges.

Solution: We hit it hard until it has an inductive structure.

More precisely, suppose we have a DFA that accepts some regular language L.
Assume Q = [n]. For p, q in Q define

Lp,q = L(〈Q,Σ, δ; p, {q} 〉)

Then L =
⋃
q∈F Lq0,q and it suffices to construct regular expressions for the

Lp,q.

The Trick 12

In order to enable an inductive argument, define a computation from state p to
state q to be k-bounded if all intermediate states are no greater than k. Note
that we only constrain the intermediate states, p and q themselves are not
required to be bounded by k.

In other words: we have erased all states > k.

Now consider the approximation languages:

Lkp,q = {x ∈ Σ? | there is a k-bounded run p
x→ q }.

Note that Lnp,q = Lp,q.

Proof Sketch, contd. 13

One can build expressions for Lkp,q by induction on k.

For k = 0 the expressions are easy:

L0
p,q =

{∑
δ(p,a)=q a if q 6= p,∑
δ(p,a)=p a+ ε if p = q.

So suppose k > 0. The key idea is to use the equality

Lkp,q = Lk−1
p,q + Lk−1

p,k · (Lk−1
k,k)∗ · Lk−1

k,q

Done by induction hypothesis. 2

Algebra to the Rescue 14

The last argument is a perfect example of dynamic programming.
Unfortunately, the regular expressions involved grow exponentially, so the
algorithm is not practical.

Still, one very nice feature of Kleene’s characterization is that a good definition
often generalizes. In this case, the monoid Σ? is perhaps the most natural
setting, but there are other plausible choices.

In particular we could use the product monoid Σ? × Σ? instead: since we are
dealing with sets of pairs of strings we naturally obtain binary relations this
way.

The relevant algebraic structures are called Kleene algebras. We will not study
them in any detail and just pull out the pieces that we need for our project.

More Precisely . . . 15

Suppose 〈M, ·, 1 〉 is a monoid. Here is a general way to construct a Kleene
algebra on top of M . The carrier set is P(M) and the operations are

set theoretic union,

pointwise multiplication, and

Kleene star.

More precisely, define

K · L = {x · y | x ∈ K, y ∈ L }

K0 = {1} Kn+1 = K ·Kn

K? =
⋃

n≥0

Kn

Rational Relations 16

Definition

A k-ary rational relation is a relation R ⊆M where

M = Σ?1 × Σ?2 × . . .× Σ?k

and R is generated in the Kleene algebra over M from elements

(ε, . . . , ε, a, ε, . . . , ε)

Strictly speaking, this should be a singleton set, but in this context it is best
not to distinguish between z and {z}. Trust me and types be damned.

Note that in the special case k = 1 we get back ordinary regular languages.

Better Generators 17

It is easy to see that we could also allow generators of the form

(x1, x2, . . . , xk−1, xk)

where xi ∈ Σ?i .

Using these and customary operation symbols +, · (often implicit) and ? we
obtain rational expressions that provide a notation system for rational relations.

Preserving Sanity 18

We will mostly deal with the case k = 2 and consider the monoid

M = Σ? × Γ? and even M = Σ? × Σ?

We often write x/y for an element of M , so x ∈ Σ?, y ∈ Γ?. This is just fancy
notation for a pair of words.

Writing rational expression can be a bit confusing, so on occasion we use vector
notation, in particular in the case k = 2, and write

(x
y

)
. Think of this a two

tracks with one word in each track.

Note that multiplication here is componentwise:

(x
y

)
·
(
u
v

)
=
(xu
yv

)

Examples 19

Let Σ = {a, b}.
The universal relation on Σ? is given by

((
ε
a

)
+
(
ε
b

)
+
(
a
ε

)
+
(
b
ε

))∗
= {

(x
y

)
| x, y ∈ Σ? }

The identity relation on Σ? is given by

((
a
a

)
+
(
b
b

))∗
= {

(
x
x

)
| x ∈ Σ? }

Exercise

Show that the un-equal relation is rational.

Maps versus Relations 20

By definition, a rational relation has the form

ρ ⊆ Σ? × Γ?

But we may also think of such a relation as a so-called transduction, a map

ρ : Σ? −→ P(Γ?)

This is the reason for the x/y notation: think of x as being mapped to y.

Of course, there is no fundamental difference between the two interpretations.
We will switch back and forth as convenient.

Machine Example 21

We already know that identity x = y is a rational relation. Here is a transducer
whose behavior is the relation x 6= y.

a/b

a/ε

ε/a

a/a

∗

a/ε

ε/a

In the diagram, a and b are supposed to range over Σ, and a 6= b.
∗ means: gobble up the rest of the input, in a state of eternal bliss.

Kleene’s Theorem on Steroids 22

With the proper definitions we can show an analogue to Kleene’s theorem:

Theorem

A relation is rational (in the sense of the Kleene algebra approach) if, and only
if, it is computed by a (finite) transducer.

The proof is an exact re-run of the argument for regular languages, once all the
definitions are just right.

Exercise

Write out a detailed proof of the theorem.

� Rational Relations

2 Properties of Rat

More Wisdom 24

Good mathematicians see analogies between theorems or
theories; the very best ones see analogies between analogies.

S. Banach

Wurtzelbrunft’s Conjecture 25

Wurtzelbrunft remembers the Banach quote about analogies and immediately
concludes:

Every result about regular languages carries over, mutatis mu-
tandis, to rational relations.

After all, it’s just about the same Kleene algebra we are working in, so what
could possibly change? For example, we should be able to come up with a nice
machine model, figure out how to determinize and minimize these devices, and
so on.

Fortunately, life is so much more interesting than that.

Some results do indeed carry over, almost verbatim. But others a plain false
and one has to be very careful.

Problem 1: Intersection 26

Consider the binary rational relations

A =
(
a
c

)?(b
ε

)?
B =

(
a
ε

)?(b
c

)?

Then
A ∩B = {

(
aibi

ci

)
| i ≥ 0 }

It is easy to see that the intersection cannot be recognized by a finite state
transducer, essentially for the same reasons that { aibi | i ≥ 0 } fails to be
regular.

Exercise

Prove that A ∩B really fails to be rational.

Disaster Strikes 27

Rational relations are closed under union by definition.

So the last result shows that we fail to have closure under intersection and
complement.

This makes it really difficult to work with rational relations in general. In fact,
next class we will see how to adjust our definitions to make this problem go
away.

But for the time being, let’s stick with rational relations.

Examples 28

Example

If K ⊆ Σ? and L ⊆ Γ? are regular, then K × L is rational.

Example

If ρ ⊆ Σ? × Γ? is rational, then spt(ρ) ⊆ Σ? and rng(ρ) ⊆ Γ? are regular.

Here spt(ρ) is the support of ρ: {x ∈ Σ? | ∃ y ρ(x, y) }.

Example

All the relations “x is a prefix of y”, “x is a suffix of y”, “x is a factor of y”
and “x is a subword of y” are rational.

Shuffle 29

Example

Recall the definition of shuffle:

ε ‖ y = y ‖ ε = {y}

xa ‖ yb = (x ‖ yb) a ∪ (xa ‖ y) b.

So x ‖ y is the set of all possible interleavings of the letters of x and y
(preserving relative order).

The map (x, y) 7→ x ‖ y is rational.

Note that we could also think of shuffle as a ternary relation sh(x, y, z)
meaning z ∈ x ‖ y.

((a
ε
a

)
+
(b
ε
b

)
+
(ε
a
a

)
+
(ε
b
b

))∗
=
{(x

y
z

) ∣∣∣ z ∈ x ‖ y
}

Determinism 30

Disregarding state complexity, in the world of regular languages, there is no real
need for nondeterminism: every regular language is already accepted by a
deterministic FSM (a famous result by Rabin and Scott in 1959).

One might wonder if there is some notion of deterministic rational relation and
a corresponding deterministic transducer.

The basic idea is simple: there should be at most one computation on all
inputs.

Unfortunately, the technical details are a bit messy (use of endmarkers) and
we’ll skip this opportunity to inflict mental pain on the student body.

Problem 2: Determinism and Union 31

Consider the binary rational relations

A =
(
aa
b

)?
B =

(
a
bb

)?

It is clear that both A and B are deterministic rational relations.

Now consider
A ∪B = {

(
ai

bj

)
| i = 2j ∨ j = 2i }

For the union, your intuition should tell you that nondeterminism is critical:
initially, we don’t know which type of test to apply. This indicates that
determinization is not going to work in general for rational relations (which is
to be expected since we already know that complementation fails in general).

Example: Word Orders 32

Consider the binary relation <len on Σ? defined by

x <len y ⇐⇒ |x| < |y|.

We obtain a strict pre-order called length order; the corresponding classes of
indistinguishable elements are words of the same length.

Given an ordered alphabet Σ consider the binary relation <s on Σ? defined by

x <s y ⇐⇒ ∃ a < b ∈ Σ, u, v, w ∈ Σ? (x = uav ∧ y = ubw)

This produces another strict pre-order, the so-called split order; this time
indistinguishable words are prefixes of one another.

Lexicographic Order 33

Again assume an ordered alphabet Σ. The lexicographic order is a mix of prefix
order and split order:

x <` y ⇐⇒ x < y ∨ x <s y

Here x < y means that x is a proper prefix of y. Note that lexicographic order
is a total order, there are no indistinguishable elements.

Proposition

Length order, split order and lexicographic order are all rational.

Exercise

Construct rational expressions that prove the proposition. Then construct the
corresponding transducers.

Length-Lex Order 34

Another important way of ordering words is the product order of length order
and lexicographic order, the so-called length-lex order.

x <`` y ⇐⇒ x <len y ∨ (|x| = |y| ∧ x <` y)

Length-lex order is easily seen to be a well-order and there are many algorithms
on strings that are naturally defined by induction on length-lex order.

Needless to say, length-lex order is also rational.

Concatenation is Rational 35

Usually one thinks of concatenation as a binary operation. But we can also
model it as a ternary relation γ:

γ(x, y, z) ⇐⇒ x · y = z

Proposition

Concatenation is rational.

Proof. For simplicity assume Σ = {a, b}

γ = (a:ε:a+ b:ε:b)? · (ε:a:a+ ε:b:b)?

2

Addition is Rational 36

Consider the ternary relation α on 2 defined by

α(x, y, z) ⇐⇒ bin(x) + bin(y) = bin(z)

where bin(x) is the numerical value of x assuming the LSD is first (reverse
binary).

Proposition

Binary addition in reverse binary is rational.

Proof. The kindergarten algorithm for addition shows that α is rational. 2

Warning: there is no analogous result for multiplication (for reverse binary
encoding; but beware of exotic encodings).

Relational Composition 37

Here is a central result: rational relations are closed under composition.
Suppose we have two binary relations ρ ⊆ Σ? × Γ? and σ ⊆ Γ? ×∆?. Their
composition τ = ρ ◦ σ ⊆ Σ? ×∆? is defined to be the binary relation

x τ y ⇐⇒ ∃ z (x ρ z ∧ z σ y)

Theorem (Elgot, Mezei 1965)

If both ρ and σ are rational, then so is their composition ρ ◦ σ.

Proof 38

Assume we have transducers A and B for ρ and σ, respectively. We may safely
assume that the labels in A have the form a/ε or ε/b where a ∈ Σ, b ∈ Γ;
likewise for B. Add self-loops labeled ε/ε everywhere.

We construct a product automaton C with transitions

(p, q)
a/c−→ (p′, q′)

whenever there are transitions p
a/b−→ p′ and q

b/c−→ q′ in A and B, respectively,
for some a ∈ Σε, b ∈ Γε and c ∈ ∆ε.

Initial and final states in C are I1 × I2 and F1 × F2. It is a labor of love to
check that C accepts x/z if, and only if, x ρ y and y σ z for some y ∈ Γ?. 2

Example 39

Let ρ =
(
a
bb

)?
and σ =

(
b
ε

)(
b
c

)?
; thus ρ ◦ σ =

(
a
c

)(
a
cc

)?
.

Here are the two machines, without the ε/ε self-loops.

0 1 2
a/ε ε/b

ε/b

0 1

2

b/ε

b/ε

ε/c

Example 40

And here is the product; unlabeled transitions carry ε/ε.

00

01

02

10

11 21

22

20

12

a/ε

ε/c
a/c

ε/c

Of course, there is a “better” transducer, but this is the one obtained by blind
application of the algorithm.

Projections 41

Here is another important closure property. Suppose ρ is a k-ary relation on
words. We define the projection of ρ to be

ρ′(x2, . . . , xk) ⇐⇒ ∃ z ρ(z, x2, . . . , xk)

Lemma

Whenever ρ is rational, so is its projection ρ′.

Proof.

Erase the first track in the k-track alphabet:

p
a1,a2,...,ak−−−−−−−→ q p

a2,...,ak−−−−−→ q

That’s it! Of course, the new machine will be nondeterministic in general. 2

Transitive Closure 42

One might wonder what happens when we move to the transitive reflexive
closure tcl(ρ). Recall that

tcl(ρ) =
⊔

k

ρ◦k

where ρ◦k indicates the standard iterate, the k-fold composition of ρ with
itself.

Mental Health Warning: Unfortunately, the transitive closure is often written
ρ?, in direct clash with the standard notation for the Kleene star of a relation.

Alas, the two are quite incompatible. For example, let ρ be lexicographic order.
Clearly, tcl(ρ) = ρ.

But ab ρ? aabb since a ρ aa and b ρ bb. So Kleene star clobbers the order
completely.

Transitive Closure is Semidecidable 43

Theorem

The transitive closure tcl(ρ) of a rational relation is semidecidable.

Proof.

By definition x tcl(ρ) y iff ∃ k (x ρ◦k y).

Obviously, ρ◦k is easily decidable, uniformly in k.

So we are conducting an unbounded search over a decidable relation;
semidecidability follows.

2

Semidecidability 44

What would happen if we add tcl to the closure operations that produce the
rational relations?

Theorem

Adding tcl to the closure operations produces precisely all semidecidable
relations.

Proof.

Clearly every relation obtained this way is semidecidable.

For the opposite direction, note that the one-step relation of a Turing machine
is rational.

Then transitive closure is all that is needed to produce any semidecidable
relation.

2

Quoi? 45

We use the old trick of coding configurations of a Turing machine as words of
the form Γ?QΓ?:

xmxm−1 . . . x1 p a y2 . . . yn

Then the next configuration could look like

xmxm−1 . . . x1 b q y2 . . . yn

For the most part, we just copy the tape symbols, but there is a little bit of
hanky panky right next to the state symbol.

A transducer can easily handle this type of update operation.

By taking the transitive closure we get arbitrary computations, and thus all
semidecidable relations.

How About Functions? 46

0 1

1/0

0/1

a/a

Theorem (Schützenberger 1975)

It is decidable whether a transducer defines a function.

The argument is tricky, and it took 25 years to find a polynomial algorithm for
functionality.

A Holy Terror 47

1/1 0/0

0/0 0/1

1/0 1/1

a/a

0/ε

1/0

Collatz 48

Recall the infamous Collatz problem: Does the following program halt for all
x ≥ 1?

while(x > 1) // x positive integer

if(x even)

x = x/2;

else

x = 3 * x + 1;

If we write x in reverse binary, and right-pad with 00, the transducer on the
last slide computes one execution of the loop body.

So iterating the composition of the trivial x 7→ x00 and the transducer leads to
an open problem in number theory.

Collatz Mountains 49

Off to ∞ 50

If you think the padding operation x 7→ x00 is an ugly kludge, you can easily
get rid of it: just write your numbers as infinite strings in 2ω.

Stop when the string 10ω is reached.

This may sound weird, but automata on infinite strings are actually hugely
important and help to build decision algorithms that are used in program
verification.

Unfortunately, they don’t seem to be of any use when it comes to settling the
Collatz conjecture.

Length-Preserving Iteration 51

Life should be much easier with length-preserving relations:

x τ y ⇒|x| = |y|

In fact, let’s only consider the functional case: we are just iterating a map
y = τ(x).

But if τ is length-preserving then all orbits must be finite, in fact they cannot
be longer than |Σ||x|.

Theorem

For length-preserving transductions, transitive closure is PSPACE-complete in
general.

Length-Preserving Example 52

Recall that xop is the word x written backwards.

It is clear that the map x 7→ xop cannot be computed by a FSM.

But iteration of a length-preserving transduction can be used to “compute” xop

as follows.

Define a new alphabet Γ = Σ ∪ { a | a ∈ Σ }.
There is a length-preserving rational function τ such that τ(ε) = ε and

τ(a uv) = u a v

where au ∈ Σ? and v ∈ Σ
?
. Let f be the homomorphism f(a) = a. Then

xop = f
(
x tcl(τ) ∩ Σ

?
)

Fixed-Points 53

But as soon as we try to make a global statement, decidability vanishes. For
example:

Proposition

It is undecidable whether all orbits of a functional length-preserving
transduction end in a fixed point.

Sketch of proof.

Simulate a Turing machine without input, operating on bounded memory. Set
things up so that all orbits end in a fixed point iff the Turing machine
computation diverges.

So the fixed point means: the computation has run out of space. If, on the
other hand, the computation converges for some sufficiently long initial setup,
then we periodically repeat the whole computation.

2

In fact this problem turns out to be co-r.e.-complete.

