CMU 15-251 Spring 2018

LECTURE 26: MODULAR ARITHMETIC HANDOUT NOTES

Interesting Things About Modular Arithmetic	Interesting	Things	About	Modular	Arithmetic
---	-------------	--------	-------	---------	------------

State 3 of them:

The operations we will study in the modular world:

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

Outline

SECTION 1: COMPLEXITY OF OPERATIONS IN INTEGERS

SECTION 2: MODULAR ARITHMETIC: BASIC DEFINITIONS AND PROPERTIES

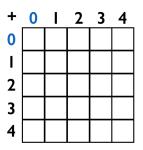
SECTION 3: COMPLEXITY OF OPERATIONS MODULO N

1 COMPLEXITY OF OPERATIONS IN INTEGERS

	Poly-time?	${f Algorithm}$	Additional notes
Addition			
Subtraction			
Multiplication			
Division			
Exponentiation			
Taking roots			
Taking logs			
Factorization	Don't know	Best one is exponential time	Want it to be computationally hard for cyrpto
isPrime	Yes	Miller-Rabin Monte Carlo alg.	A poly-time deterministic algorithm is also known
Generating n -bit prime	Yes	Random sampling + isPrime	No poly-time deterministic algorithm is known

2 MODULAR ARITHMETIC: BASIC DEFINITIONS AND PROPERTIES

Notation: "A is congruent to B modulo N":


Fact/Exercise: $A \equiv_N B$ if and only if N divides A - B.

Notation: $\mathbb{Z}_N =$

2.1 Addition

Definition ["plus" in \mathbb{Z}_N]:

Addition table for \mathbb{Z}_5

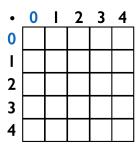
What is the additive identity?

2.2 Subtraction

Definition ["additive inverse" in \mathbb{Z}_N]:

Definition ["minus" in \mathbb{Z}_N]:

For every
$$A \in \mathbb{Z}_N$$
, $-A$ exists (why?)


 \Longrightarrow

Every row of the addition table of \mathbb{Z}_N is a permutation of \mathbb{Z}_N .

2.3 Multiplication

Definition ["multiplication" in \mathbb{Z}_N]:

Multiplication table for \mathbb{Z}_5

What is the *multiplicative identity*?

2.4 Division

Definition ["multiplicative inverse" in \mathbb{Z}_N]:

Definition ["division" in \mathbb{Z}_N]:

Is it true that for every $A \in \mathbb{Z}_N, A^{-1}$ exists?

In \mathbb{Z}_6 , which elements have a multiplicative inverse?

Fact: $A^{-1} \in \mathbb{Z}_N$ exists if and only if

Definition: $\mathbb{Z}_N^* =$

Definition: $\varphi(N) =$

Multiplication table for \mathbb{Z}_8^*

For every $A \in \mathbb{Z}_N^*$, A^{-1} exists

 \Longrightarrow

Every row of the multiplication table of \mathbb{Z}_N^* is a permutation of \mathbb{Z}_N^* .

2.5 Exponentiation (in particular in \mathbb{Z}_N^*)

Notation: For $A \in \mathbb{Z}_N, E \in \mathbb{N}, A^E =$

What is a **generator** in \mathbb{Z}_N^* ?

Theorem [Euler's Theorem]:

What is Fermat's Little Theorem?

IMPORTANT NOTE:

When exponentiating elements in \mathbb{Z}_N^* ,

3 COMPLEXITY OF OPERATIONS MODULO N

	Poly-time?	${f Algorithm}$	Additional notes
Addition			
Subtraction			
Multiplication			
Division			
Exponentiation			
Taking roots			
Taking logs			

Additional notes for division (computing B^{-1}):