

What is cryptography about?

Study of protocols that avoid the bad affects of adversaries.

The plan

Recall important things from modular arithmetic.

Private (secret) key cryptography.

Secret key sharing.

Public key cryptography.
\square
Important Things to Remember from Last Time

$\mathbb{Z}_{5}^{*} \quad \begin{array}{lllllllll}1^{0} & 1^{1} & 1^{2} & 1^{3} & 1^{4} & 1^{5} & 1^{6} & 1^{7} & 1^{8} \\ \text { | } & \text { । }\end{array}$

$\varphi(5)=4$

$$
\begin{array}{ccccccccc}
4^{0} & 4^{1} & 4^{2} & 4^{3} & 4^{4} & 4^{5} & 4^{6} & 4^{7} & 4^{8} \\
\text { | } & 4 & \text { | }
\end{array}
$$

2 and 3 are called generators.

Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.

1

A^{0}	A^{1}	A^{2}
II	II	II
$A^{\varphi,\left(W^{*}\right)}$	$A^{\varphi \cdot\left(-N^{\prime}\right)+1}$	$A^{\varphi(-\mathcal{C N})+2}$
II	II	II
$A^{26 \varphi\left(\mathcal{N}^{*}\right)}$	$A^{2 . \varphi\left(\mathcal{N}^{*}\right)+1}$	$A^{2 \varphi \varphi(\mathbb{N})+2}$

IMPORTANT!!!

Complexity of Arithmetic Operations

> addition $A+_{N} B$
Do regular addition. Then take $\bmod \mathrm{N}$.
> subtraction A - $_{N} B$
$-B=N-B$. Then do addition.
> multiplication $A \cdot{ }_{N} B$
Do regular multiplication. Then take $\bmod N$.
$>$ division $A /{ }_{N} B$
Find B^{-1}. Then do multiplication.
$>$ exponentiation $A^{B} \bmod N$
Fast modular exponentiation: repeatedly square and mod.
> taking roots
> logarithm
$\ln \mathbb{Z}$
$(B, E) \rightarrow \mathrm{EXP} \rightarrow B^{E}$

Two inverse functions:

$$
\begin{aligned}
& \left(B^{E}, E\right) \rightarrow \mathrm{ROOT}_{E} \rightarrow B \\
& \left(B^{E}, B\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E
\end{aligned}
$$

$\ln \mathbb{Z}_{N}^{*}$
$(B, E, N) \rightarrow \operatorname{EXP} \rightarrow B^{E} \bmod N$
Two inverse functions:

$$
\begin{aligned}
& \left(B^{E}, E, N\right) \rightarrow \mathrm{ROOT}_{E} \rightarrow B \\
& \left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E
\end{aligned}
$$

One-way function:

Private Key Cryptography

(Cryptography Before WW2)

Private key cryptography

Private key cryptography

A note about security
Better to consider worst-case conditions.

Assume the adversary knows everything except the key(s) and the message:

Completely sees ciphertext C.
Completely knows the algorithms Enc and Dec.

Caesar shift

Example: shift by 3
abcdefghijklmnopqrstuvwxyz $\downarrow \downarrow \downarrow$ defghijklmnopqrstuvwxyzabc
(similarly for capital letters)
"Dear Math, please grow up and solve your own problems."
\downarrow
"Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv."
皿: the shift number

Substitution cipher

abcdefghijklmnopqrstuvwxyz $\downarrow \downarrow \downarrow$ jkbdelmcfgnoxyrs vwzatupqhi

皿 : permutation of the alphabet

Enigma

A much more complex cipher.

One-time pad		
$M=$ message	$\mathrm{K}=\text { key }$ (everything	$\begin{aligned} & \mathrm{C}=\text { encrypted } \\ & \text { binary) } \end{aligned}$
Decryption:		
$C=10010110101111011000010$		
$M=01011010111010100000111$		
Encryption: $\quad \mathrm{C}=\mathrm{M} \oplus \mathrm{K}$		
Decryption:		

One-time pad

$$
\begin{aligned}
M & =01011010111010100000111 \\
\oplus \quad K & =11001100010101111000101 \\
\hline C & =100101101011111011000010
\end{aligned}
$$

One-time pad is perfectly secure:

One-time pad

$$
\begin{aligned}
M & =01011010111010100000111 \\
\oplus(K & =11001100010101111000101 \\
\hline C & =100101101011111011000010
\end{aligned}
$$

Could we reuse the key?

One-time only:

Suppose you encrypt two messages M_{1} and M_{2} with K.
$C_{1}=M_{1} \oplus K$
$\mathrm{C}_{2}=\mathrm{M}_{2} \oplus \mathrm{~K}$
Then $C_{1} \oplus C_{2}=M_{1} \oplus M_{2}$

Shannon's Theorem

Is it possible to have a secure system like one-time pad with a smaller key size?

Shannon proved "no".
If K is shorter than M :

Great Idea

A whole new world of possibilities

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part.
(public key cryptography)

And do much more!!!

Secret Key Sharing

Secret Key Sharing

6K

DH key exchange

$$
\begin{gathered}
(B, E, N) \rightarrow \operatorname{EXP}^{\ln \mathbb{Z}_{N}^{*}} \rightarrow B^{E} \bmod N \text { easy } \\
\left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E \quad \begin{array}{c}
\text { seems } \\
\text { hard }
\end{array}
\end{gathered}
$$

Careful.

We don't want $B^{0} B^{1} B^{2} B^{3} B^{4} \ldots$

$B 1$ B

Much better to have a generator B.

DH key exchange

$$
\begin{gathered}
(B, E, N) \rightarrow \operatorname{EXP}^{\ln \mathbb{Z}_{N}^{*}} \rightarrow B^{E} \bmod N \text { easy } \\
\left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E \quad \begin{array}{c}
\text { seems } \\
\text { hard }
\end{array}
\end{gathered}
$$

We'll pick $N=P$ a prime number.
(This ensures there is a generator in \mathbb{Z}_{P}^{*}.)
We'll pick $B \in \mathbb{Z}_{P}^{*}$ so that it is a generator.

$$
\left\{B^{0}, B^{1}, B^{2}, B^{3}, \cdots, B^{P-2}\right\}=\mathbb{Z}_{P}^{*}
$$

DH key exchange

Secure?

Adversary sees: $P, B, B^{E_{1}}, B^{E_{2}}$
Hopefully he can't compute E_{1} from $B^{E_{1}}$.
(our hope that LOG_{B} is hard)
Good news: No one knows how to compute LOG_{B} efficiently.
Bad news: Proving that it cannot be computed efficiently is at least as hard as the P vs NP problem.

DH assumption:

Decisional DH assumption:

Diffie-Hellman key exchange

1976

Whitfield Diffie

Martin Hellman

To send a private message, one can use:

Note

This is only as secure as its weakest link, i.e. Diffie-Hellman.

Answers

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part.
(public key cryptography)

And do much more!!!

Public Key Cryptography (Cryptography After WW2)

$$
\begin{gathered}
\text { RSA crypto system } \\
(B, E, N) \rightarrow \operatorname{EXP}^{\ln \mathbb{Z}_{N}^{*}} \rightarrow B^{E} \bmod N \text { easy } \\
\left(B^{E}, E, N\right) \rightarrow \operatorname{ROOT}_{E} \rightarrow B \quad \begin{array}{c}
\text { seems } \\
\text { hard }
\end{array}
\end{gathered}
$$

What if we encode using EXP? $\quad(M=B)$
Public key can be (E, N).

RSA crypto system

(M, E, N)	$M \in \mathbb{Z}_{N}^{*}$
\downarrow	$E \in \mathbb{Z}_{\varphi(N)}$
EXP	
$\vdots=M^{E} \bmod N$	
$\left(C, K_{\text {pri }}\right)$	

$\underset{\substack{\text { Dec?!? } \\ \vdots}}{\substack{ \\\hline}}$

Concluding remarks

A variant of this is widely used in practice.
From N, if we can efficiently compute $\varphi(N)$, we can crack RSA.
If we can factor N, we can compute $\varphi(N)$.

Quantum computers can factor efficiently.

Is this the only way to crack RSA?
We don't know!
So we are really hoping it is secure.

