

\mathbb{Z}_5^* • 1 2 3 4 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1	1 ⁰ 2 ⁰ 3 ⁰ 	1 ¹ 1 2 ¹ 2 3 ¹ 3	1 ² 1 2 ² 4 3 ² 4	1 ³ I 2 ³ 3 3 ³ 2	1^4 1^2 2^4 1^3 3^4 1^4	1 ⁵ 1 2 ⁵ 2 3 ⁵ 3	1 ⁶ 2 ⁶ 4 3 ⁶ 4	1 ⁷ 1 2 ⁷ 3 3 ⁷ 2	1 ⁸ 1 2 ⁸ 1 3 ⁸ 1
$\varphi(5) = 4$ $\forall A, A^4 = 1$	4 ⁰	$\overset{4^{1}}{4} \Longrightarrow$	4^{2} I A^{4h}	4^{3} 4 6	4^4 I (A^4)	4^{5} 4 $k =$	4 ⁶ I	4 ⁷ 4	4 ⁸

Euler's The	orem:		
For any A	$\in \mathbb{Z}_N^*$, A^{arphi}	$^{(N)} = 1$.	
1			
H. II			
A^0	A^1	A^2	•••
П	н	н	
$A^{\varphi(N)}$	$A^{\varphi(N)+1}$	$A^{\varphi(N)+2}$	•••
н	н	П	
$A^{2\varphi(N)}$	$A^{2\varphi(N)+1}$	$A^{2\varphi(N)+2}$	•••

Caesar shift

(similarly for capital letters)

"Dear Math, please grow up and solve your own problems."

"Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv."

: the shift number

Substitution cipher abcdefghijklmnopqrstuvwxyz

jkbdelmcfgnoxyrsvwzatupqhi

P : permutation of the alphabet

One-time pad
M = message K = key C = encrypted message (everything in binary)
Encryption: M = 010110101110100000111 $(+) K = 11001100010101111000101$ $C = 1001011010111101000010$
$C = M \oplus K$ (bit-wise XOR)
<u>For all i</u> : C[i] = M[i] + K[i] (mod 2)

	One-time pad
M = message	K = key C = encrypted message (everything in binary)
Decryption	
C =	10010110101111011000010
⊕ K =	11001100010101111000101
M =	01011010111010100000111
Encryption:	C = M⊕K
Decryption:	

M = 01011010111010100000111

⊕ K = 11001100010101111000101

C = 10010110101111011000010

One-time pad is perfectly secure:

One-time pad
M = 010110101110100000111
$(\underline{+}) \underline{K} = 11001100010101111000101010101010101000101$
Could we reuse the key?
One-time only: Suppose you encrypt two messages M_1 and M_2 with K.
C ₁ = M ₁ ⊕K
$C_2 = M_2 \oplus K$ Then $C_1 \oplus C_2 = M_1 \oplus M_2$

Shannon's Theorem
Is it possible to have a secure system like one-time pad with a smaller key size?
Shannon proved "no".
If K is shorter than M:

Great Idea	

A whole new world of possibilities

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part. (public key cryptography)

And do much more!!!

Secret Key Sharing

Secret	Key	Sharing

			1	3
		1	-	P.
			-	
	-15	0	-	1
				1
		24	10	

 \mathcal{K}

 \mathcal{K}

DH key exchange

Secure?
Adversary sees: P, B, B^{E_1}, B^{E_2}
Hopefully he can't compute E_1 from B^{E_1} . (our hope that LOG_B is hard)
Good news: No one knows how to compute LOG_B efficiently.
Bad news: Proving that it cannot be computed efficiently is at least as hard as the P vs NP problem.
DH assumption:
Decisional DH assumption:

Diffie-Hellman key exchange

1976

Whitfield Diffie

Martin Hellman

Public Key Cryptography (Cryptography After WW2)

Secure?	

Concluding remarks

A variant of this is widely used in practice.

From $N\!\!\!,$ if we can efficiently compute $\,\varphi(N)$, we can crack RSA.

If we can factor $N\!\!,$ we can compute $\,\varphi(N).$

Quantum computers can factor efficiently.

Is this the only way to crack RSA? We don't know!

So we are really <u>hoping</u> it is secure.