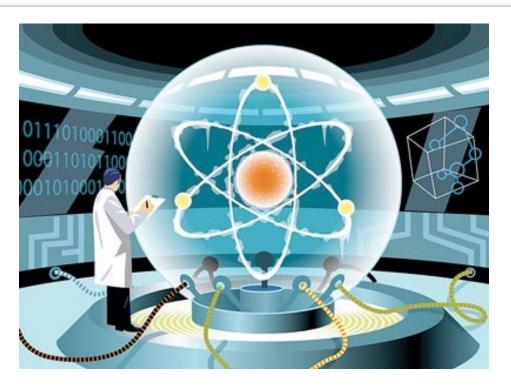
I5-25 I Great Ideas in Theoretical Computer Science

Lecture 28:

A Gentle Introduction to Quantum Computation



May 1st, 2018

Announcements

Please fill out the Faculty Course Evaluations (FCEs).

https://cmu.smartevals.com

Announcements

You can vote to eliminte 2 topics from the final exam:

Stable Matchings

Boolean Circuits

NP and Logic (Descriptive Complexity)

Transducers

Presburger Arithmetic

Announcements

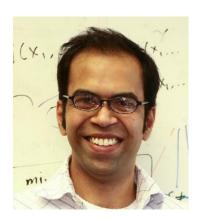
The Last Lecture on Thursday

Daniel Sleator

Mor Harchol-Balter

Ariel Procaccia

Rashmi Vinayak



Anupam Gupta

Ryan O'Donnell

Announcements The Last Lecture on Thursday

Quantum Computation

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

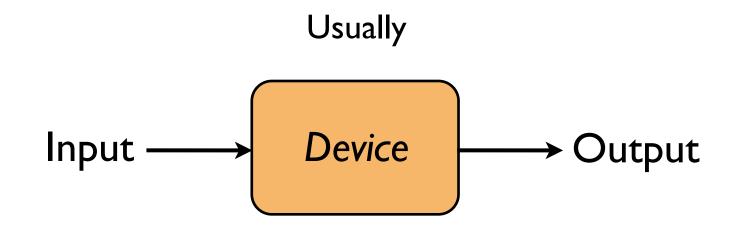
Quantum computation (practical, scientific, and philosophical perspectives)

The plan

Classical computers and classical theory of computation

What is computer/computation?

A device that manipulates data (information)

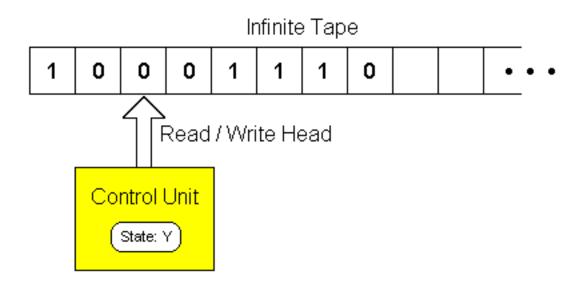


Mathematical model of a computer:

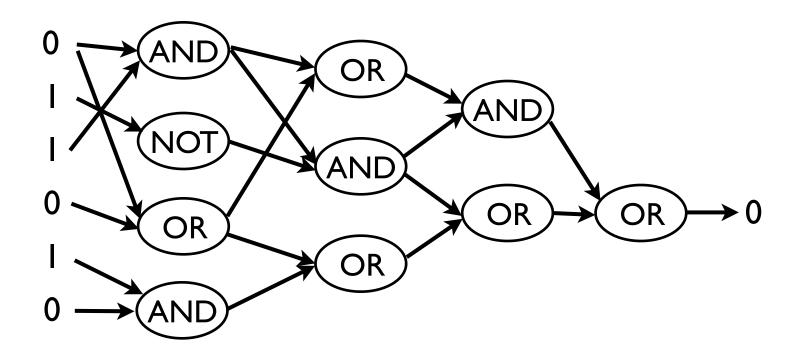
Turing Machines ~ (uniform)

Boolean Circuits

Turing Machines

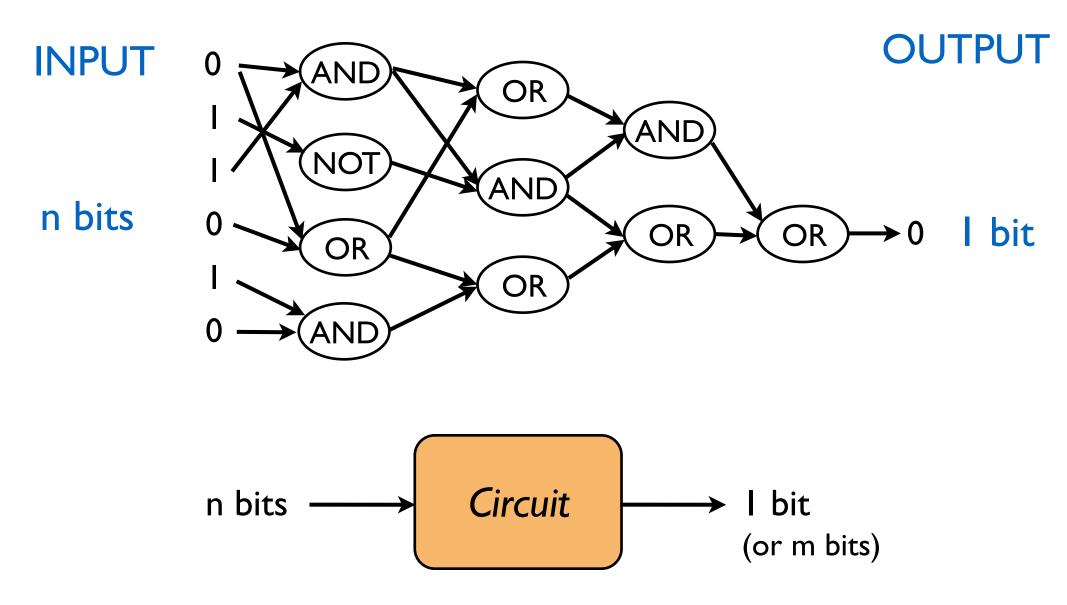


Boolean Circuits

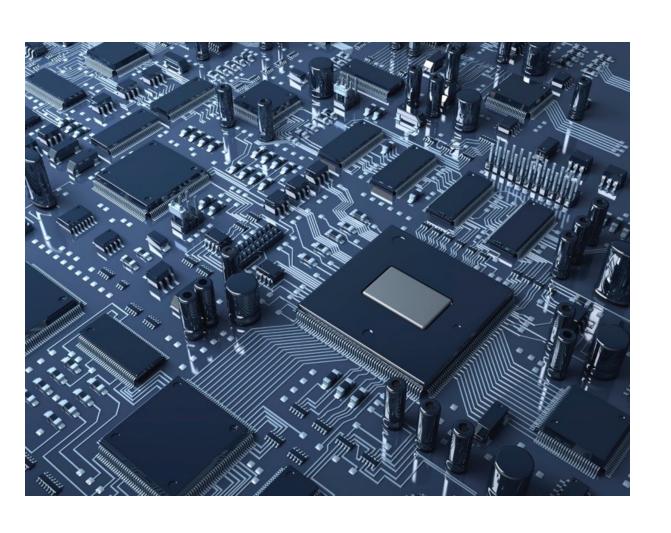


gates

Boolean Circuits



Physical Realization

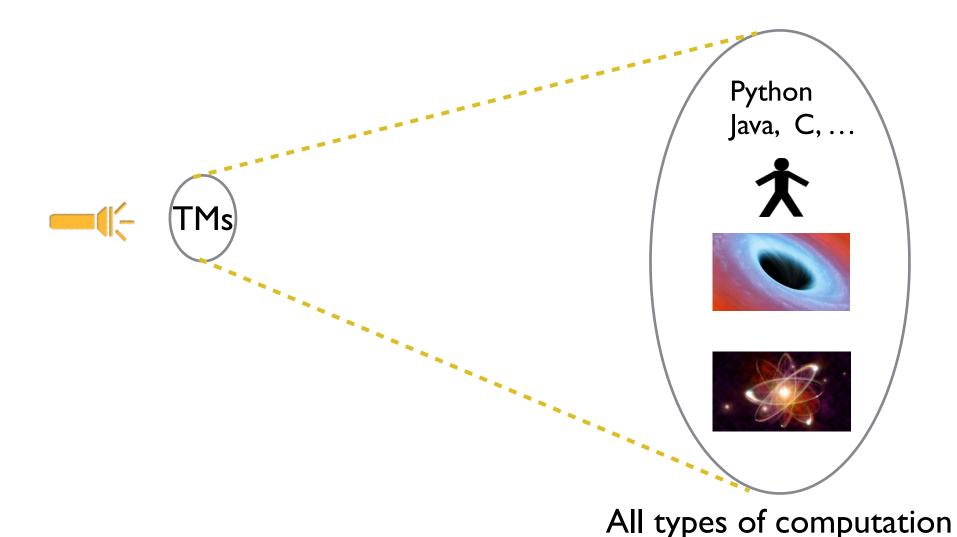


Circuits implement basic operations / instructions.

Everything follows classical laws of physics!

(Physical) Church-Turing Thesis

Turing Machines ~ (uniform) Boolean Circuits universally capture all of computation.



(Physical) Church-Turing Thesis

Turing Machines ~ (uniform) Boolean Circuits universally capture all of computation.

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved **efficiently** by a physical device, can be solved **efficiently** by a TM.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

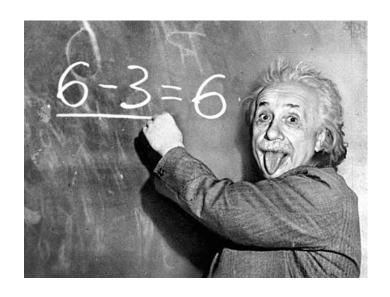
Quantum computation (practical, scientific, and philosophical perspectives)

The plan

Quantum physics (what the fuss is all about)

One slide course on physics

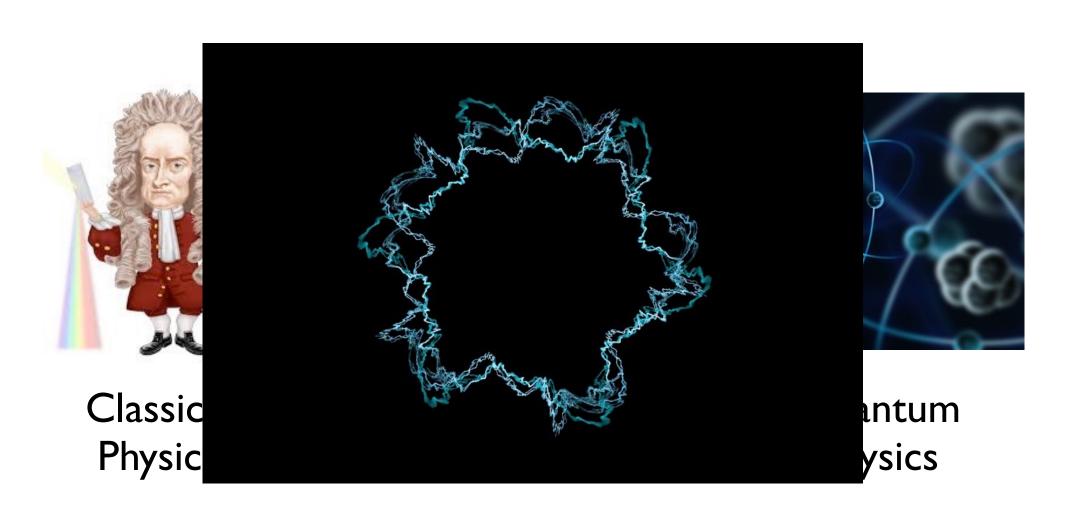
Classical Physics



General Theory of Relativity

Quantum Physics

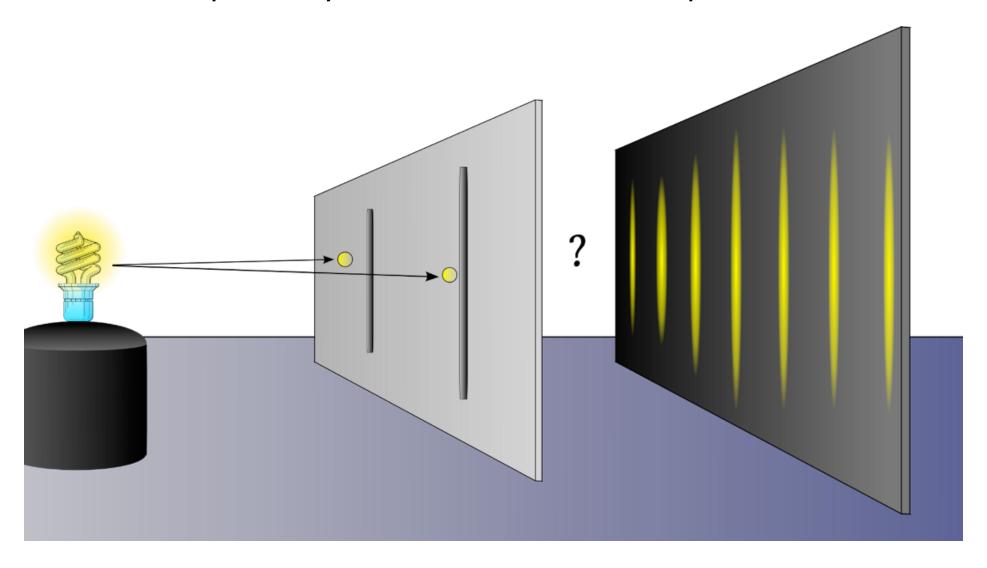
One slide course on physics



String Theory (?)

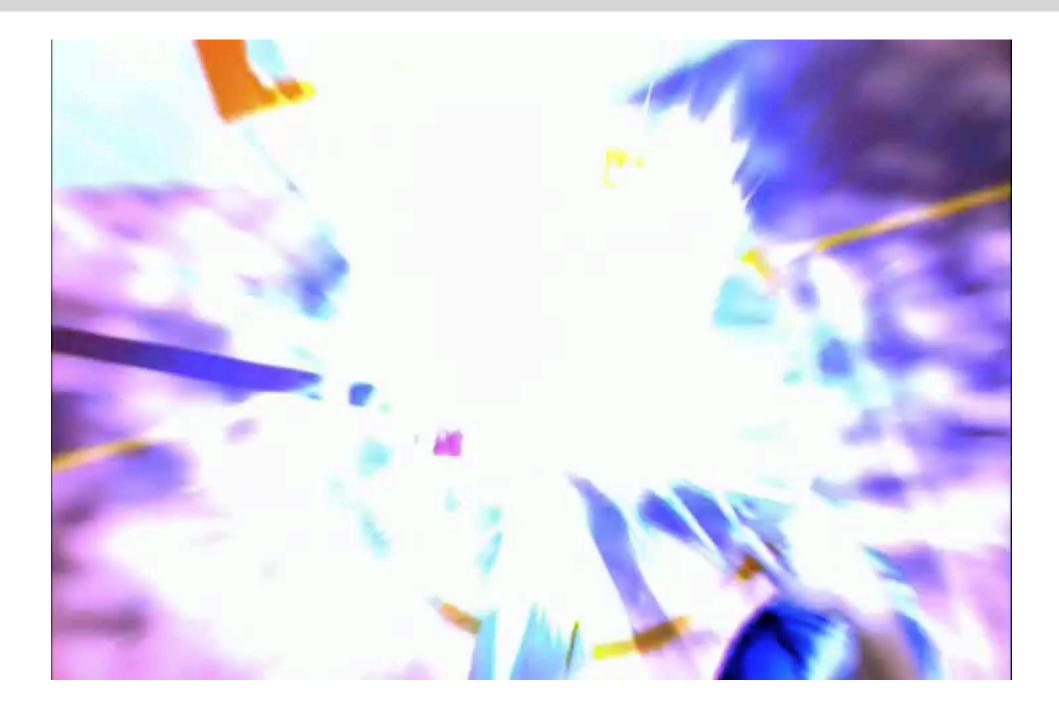
Video: Double slit experiment

http://www.youtube.com/watch?v=DfPeprQ7oGc



Nature has no obligation to conform to your intuitions.

Video: Double slit experiment



2 interesting aspects of quantum physics

I. Having multiple states "simultaneously"

```
e.g.: electrons can have states spin "up" or spin "down": |up\rangle or |down\rangle
```

In reality, they can be in a superposition of two states.

2. Measurement

Quantum property is **very** sensitive/fragile!

If you measure it (interfere with it), it "collapses".

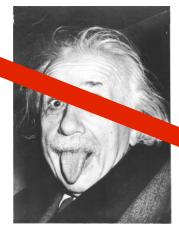
So you either see $|up\rangle$ or $|down\rangle$.

It must be just our ignorance

- There is no such thing as superposition.
- We don't how the state, so we say it is in superposition.
- In reality, it is always in one of the true states.
- This is why when we measure tobserve the state, we find it in one state

God does not play dice with the world.

- Albert Einstein



Einstein, don't tell God what to do.

- Niels Bohr

How should we fix our intuitions to put it in line with experimental results?

Removing physics from quantum physics

mathematics underlying quantum physics

generalization/extension of probability theory

(allow "negative probabilities")

Probabilistic states and evolution vs Quantum states and evolution

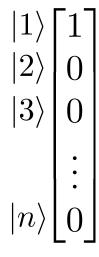
Suppose an object can have n possible states:

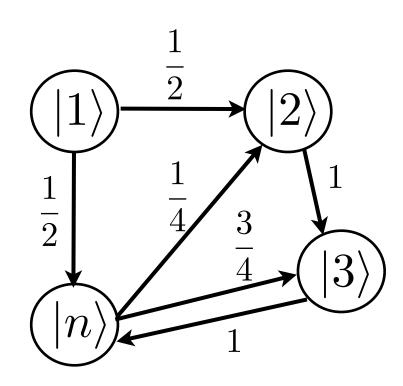
$$|1\rangle, |2\rangle, \cdots, |n\rangle$$

At each time step, the state can change probabilistically.

What happens if we start at state $|1\rangle$ and evolve?

Initial state:





Suppose an object can have n possible states:

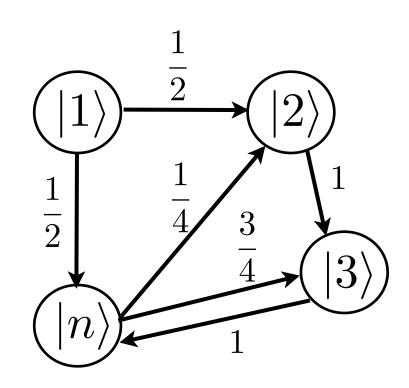
$$|1\rangle, |2\rangle, \cdots, |n\rangle$$

At each time step, the state can change probabilistically.

What happens if we start at state $|1\rangle$ and evolve?

After one time step:

$$\begin{bmatrix} \text{Transition} \\ \text{Matrix} \end{bmatrix} \begin{vmatrix} |1\rangle \begin{bmatrix} 1 \\ 0 \\ |3\rangle \begin{bmatrix} 0 \\ 0 \\ \vdots \\ |n\rangle \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ \vdots \\ 1/2 \end{bmatrix}$$



$$\begin{bmatrix} \text{Transition} \\ \text{Matrix} \end{bmatrix}_{|0}^{|1\rangle} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ |n\rangle \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ \vdots \\ 1/2 \end{bmatrix}$$
 the new state (probabilistic)

A general probabilistic state:

$$\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \quad p_i = \text{ the probability of being in state } i$$

$$p_1 + p_2 + \dots + p_n = 1$$

$$(\ell_1 \text{ norm is 1})$$

$$\begin{bmatrix} \text{Transition} \\ \text{Matrix} \end{bmatrix}_{|0}^{|1\rangle} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ |n\rangle \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \\ 0 \\ \vdots \\ 1/2 \end{bmatrix}$$
 the new state (probabilistic)

A general probabilistic state:

$$\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} = p_1 |1\rangle + p_2 |2\rangle + \dots + p_n |n\rangle$$

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Evolution of probabilistic states

Transition
Matrix

Any matrix that maps
probabilistic states to probabilistic states.

We won't restrict ourselves to just one transition matrix.

$$\pi_0 \xrightarrow{K_1} \pi_1 \xrightarrow{K_2} \pi_2 \xrightarrow{K_3} \cdots$$

Quantum states

 $\begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}$

 p_i 's can be negative.

Quantum states

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{array}{l} \alpha_i \text{'s can be negative. } (\alpha_i \text{'s are called amplitudes.}) \\ \alpha_1 | 1 \rangle + \alpha_2 | 2 \rangle + \dots + \alpha_n | n \rangle \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{array}{l} \alpha_1 | 1 \rangle + \alpha_2 | 2 \rangle + \dots + \alpha_n | n \rangle \\ \alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2 = 1 \quad (\ell_2 \text{ norm is 1}) \\ (\alpha_i \text{ can be a complex number}) \end{array}$$

$$\begin{bmatrix} \text{Unitary} \\ \text{Matrix} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \qquad \beta_1^2 + \beta_2^2 + \dots + \beta_n^2 = 1$$

any matrix that preserves "quantumness"

Quantum states

Evolution of quantum states

We won't restrict ourselves to just one unitary matrix.

$$\psi_0 \xrightarrow{U_1} \psi_1 \xrightarrow{U_2} \psi_2 \xrightarrow{U_3} \cdots$$

Quantum states

Measuring quantum states

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha_1 |1\rangle + \alpha_2 |2\rangle + \dots + \alpha_n |n\rangle$$

$$\vdots$$

$$\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2 = 1$$

When you measure the state, you see state i with probability α_i^2 .

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

randomize a random state

random state

$$|0\rangle \rightarrow \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle$$

$$\frac{1}{2} \left(\frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle\right) \qquad \frac{1}{2} \left(\frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle\right)$$

$$\frac{1}{4} |0\rangle + \frac{1}{4} |1\rangle \qquad + \qquad \frac{1}{4} |0\rangle + \frac{1}{4} |1\rangle$$

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$

$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$\begin{aligned} |0\rangle &\rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\ &\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) & \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) \\ &\frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle & + & -\frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle = |1\rangle \end{aligned}$$

Classical Probability

To find the probability of an event:

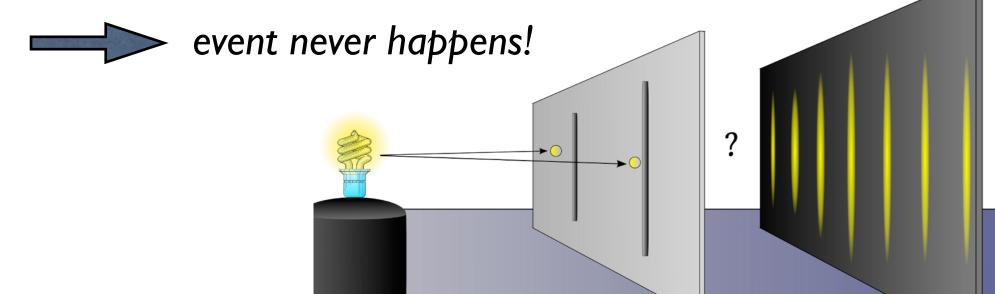
add the probabilities of every possible way it can happen

Quantum

To find the probability of an event:

add the amplitudes of every possible way it can happen, then square the value to get the probability.

one way has positive amplitude the other way has equal negative amplitude



A final remark

Quantum states are an **upgrade** to:

2-norm (Euclidean norm) and algebraically closed fields.

Nature seems to be choosing the mathematically more elegant option.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computation (practical, scientific, and philosophical perspectives)

The plan

Quantum computation (practical, scientific, and philosophical perspectives)

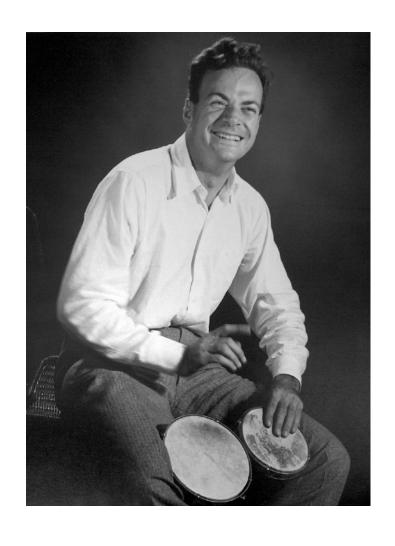
Two beautiful theories

Theory of computation

Quantum physics

Quantum Computation:

Information processing using laws of quantum physics.



Richard Feynman (1918 - 1988)

It would be super nice to be able to simulate quantum systems.

With a classical computer this is extremely inefficient.

n-state quantum system complexity exponential in n

Why not view the quantum particles as a computer simulating themselves?

Why not do computation using quantum particles/physics?

An electron can be in "spin up" or "spin down" state.

$$|\mathrm{up}\rangle$$
 or $|\mathrm{down}\rangle$ ~ $|0\rangle$ or $|1\rangle$

A quantum bit:
$$\alpha_0|0\rangle + \alpha_1|1\rangle, \qquad \alpha_0^2 + \alpha_1^2 = 1$$
 (qubit)

A superposition of $|0\rangle$ and $|1\rangle$.

When you measure:

With probability α_0^2 it is $|0\rangle$. With probability α_1^2 it is $|1\rangle$.

An electron can be in "spin up" or "spin down" state.

$$|\mathrm{up}\rangle$$
 or $|\mathrm{down}\rangle$ ~ $|0\rangle$ or $|1\rangle$

A quantum bit:
$$\alpha_0|0\rangle + \alpha_1|1\rangle, \qquad \alpha_0^2 + \alpha_1^2 = 1$$
 (qubit)

2 qubits:

$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

$$\alpha_{00}^2 + \alpha_{01}^2 + \alpha_{10}^2 + \alpha_{11}^2 = 1$$

An electron can be in "spin up" or "spin down" state.

$$|\mathrm{up}\rangle$$
 or $|\mathrm{down}\rangle$ ~ $|0\rangle$ or $|1\rangle$

A quantum bit:
$$\alpha_0|0\rangle+\alpha_1|1\rangle, \qquad \alpha_0^2+\alpha_1^2=1$$
 (qubit)

3 qubits:

$$\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle +$$

 $\alpha_{100}|100\rangle + \alpha_{101}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$

$$\alpha_{000}^2 + \alpha_{001}^2 + \alpha_{010}^2 + \alpha_{011}^2 + \alpha_{100}^2 + \alpha_{101}^2 + \alpha_{110}^2 + \alpha_{111}^2 = 1$$

An electron can be in "spin up" or "spin down" state.

$$|\mathrm{up}
angle$$
 or $|\mathrm{down}
angle$ ~ $|0
angle$ or $|1
angle$

A quantum bit:
$$\alpha_0|0\rangle + \alpha_1|1\rangle, \qquad \alpha_0^2 + \alpha_1^2 = 1$$
 (qubit)

For n qubits, how many amplitudes are there?

Processing data

What will be our model?

In the classical setting, we had:

- Turing Machines
- Boolean circuits

In the quantum setting, more convenient to use the circuit model.

Processing data: quantum gates

One non-trivial classical gate for a single classical bit:

$$0 \longrightarrow \text{NOT} \longrightarrow 1$$

$$1 \longrightarrow \text{NOT} \longrightarrow 0$$

There are many non-trivial quantum gates for a single qubit.

One famous example: Hadamard gate

$$|0\rangle \longrightarrow H \longrightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$|1\rangle \longrightarrow H \longrightarrow \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

"transition" matrix:

$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Processing data: quantum gates

Examples of classical gates on 2 classical bits:

A famous example of a quantum gate on 2 qubits:

controlled NOT

For
$$|x\rangle$$
 $|x\rangle$ $|x\rangle$ $|x\rangle$ $|x\oplus y\rangle$

"transition" matrix:

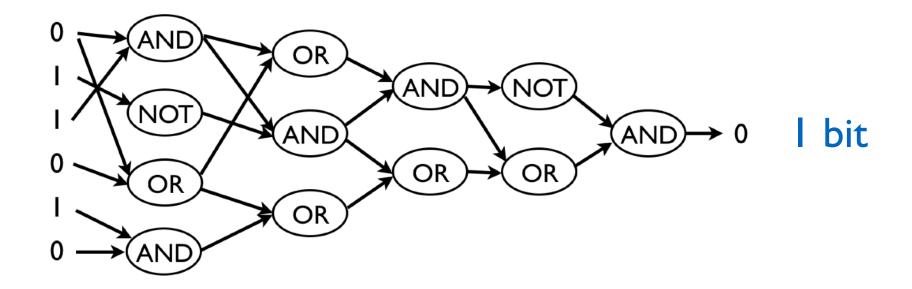
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

A classical circuit

INPUT

OUTPUT

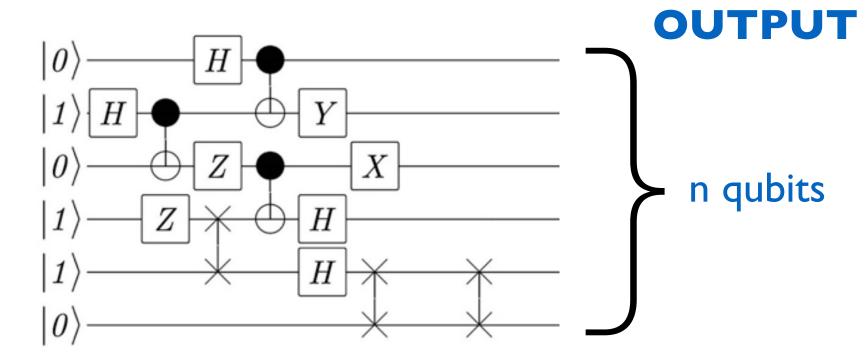
n bits



A quantum circuit

INPUT

n qubits



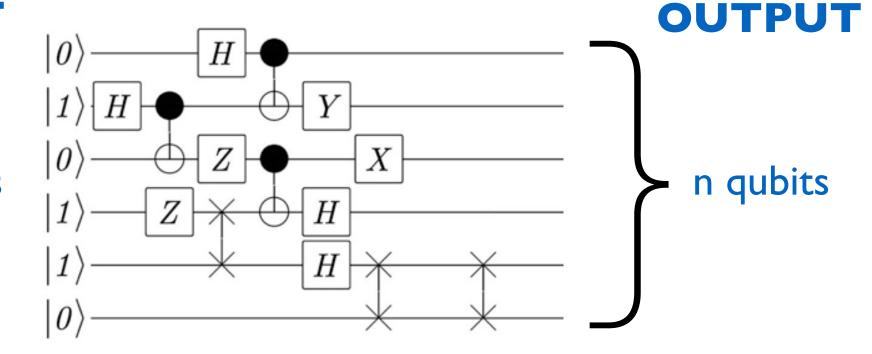
quantum gates

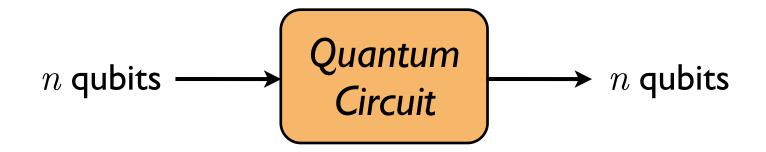
(acts on I qubit)

(acts on 2 qubits)

A quantum circuit

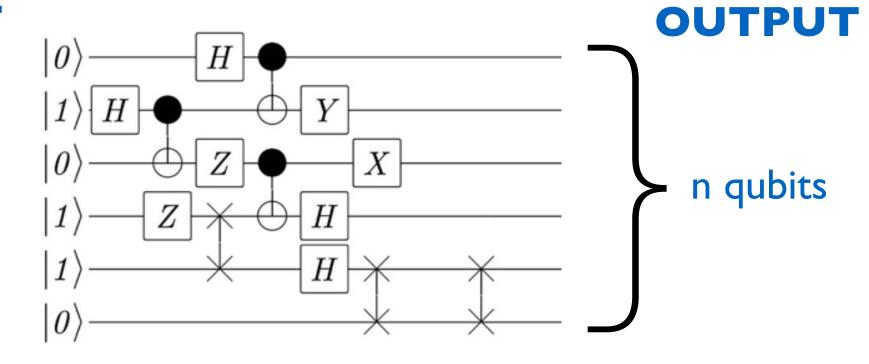
INPUT

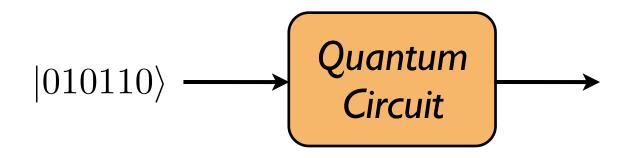




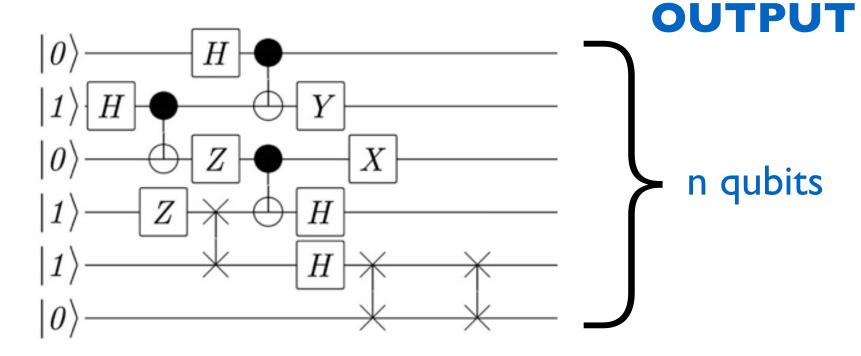
A quantum circuit

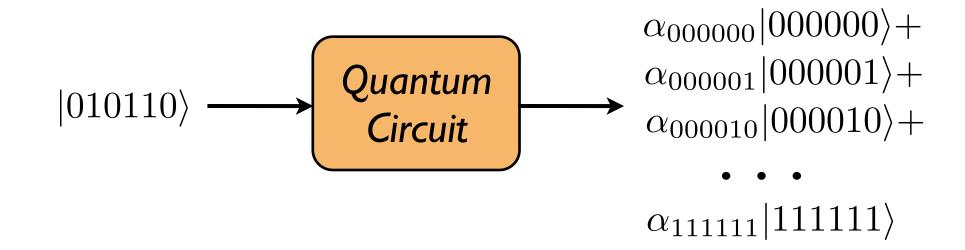
INPUT





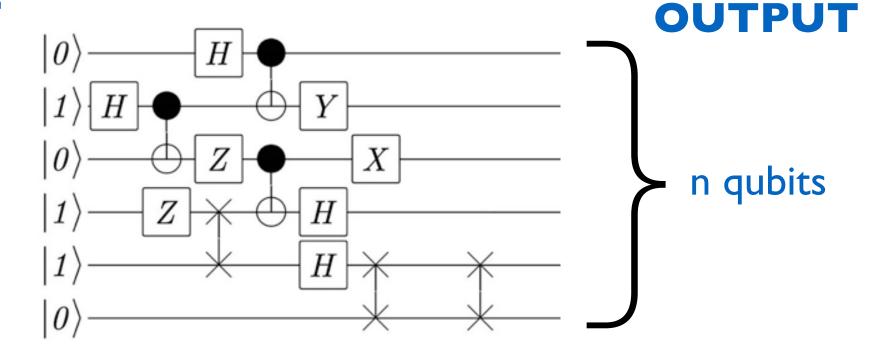
A quantum circuit

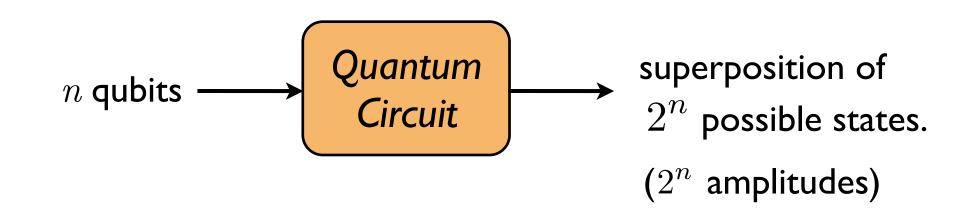




A quantum circuit

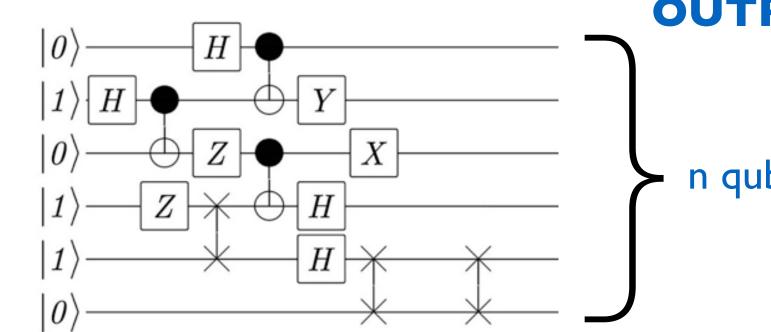
INPUT





A quantum circuit

INPUT



n qubits

How do we get "classical information" from the circuit?

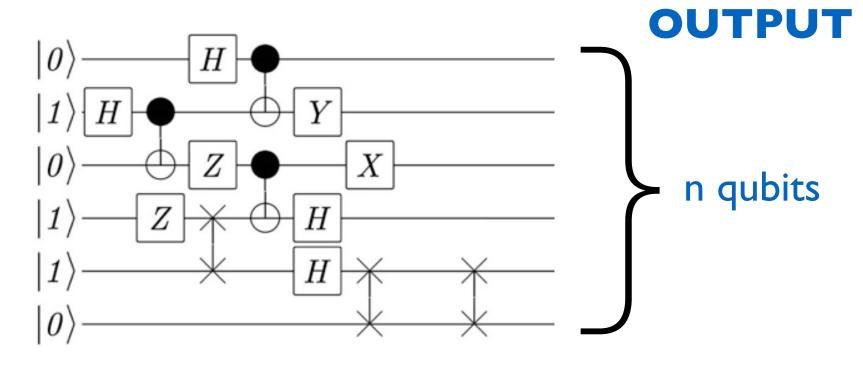
We measure the output qubit(s). e.g. we measure:

$$\alpha_{000000}|000000\rangle + \alpha_{000001}|000001\rangle + \cdot \cdot \cdot + \alpha_{111111}|1111111\rangle$$

A quantum circuit

INPUT

n qubits



Complexity?

number of gates ~ computation time

Physical Realization

Practical, Scientific and Philosophical Perspectives

Practical perspective

What useful things can we do with a quantum computer?

We can factor large numbers efficiently!

203703597633448608626844568840937816105146839366593625063614044935438129976333670618339 844568840937816105146839366593625063614044935438129976333670618339928374928729109198341 992834719747982982750348795478978952789024138794327890432736783553789507821378582549871

So what?

Can break RSA!

Can we solve every problem efficiently?

No!

Practical perspective

What useful things can we do with a quantum computer?

Can simulate quantum systems efficiently!

Better understand behavior of atoms and moleculues.

Applications:

- nanotechnology
- microbiology
- pharmaceuticals
- superconductors.

• • •

Scientific perspective

To know the limits of efficient computation:

Incorporate actual facts about physics.

Scientific perspective

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved **efficiently** by a physical device, can be solved **efficiently** by a TM.

Strong version doesn't seem to be true!

Philosophical perspective

Is the universe deterministic?

How does nature keep track of all the numbers?

1000 qubits
$$\rightarrow 2^{1000}$$
 amplitudes

How should we interpret quantum measurement? (the measurement problem)

Does quantum physics have anything to say about the human mind?

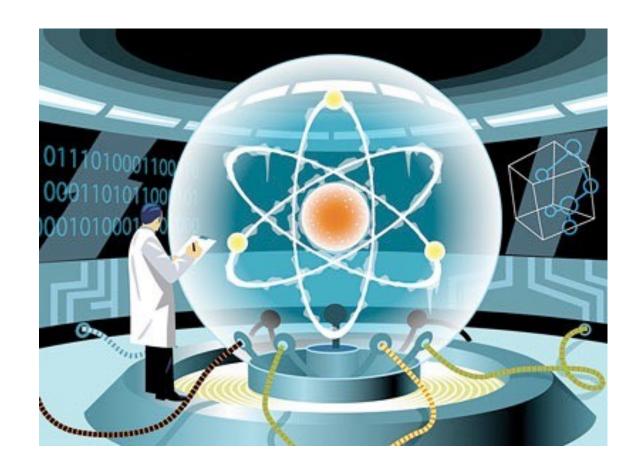
Quantum Al?

Where are we at building quantum computers?

When can I expect a quantum computer on my desk?

After about 20 years and I billion dollars of funding: Can factor 21 into 3×7 . (with high probability)

Challenge: Interference with the outside world. "quantum decoherence"



A whole new exciting world of computation.

Potential to fundamentally change how we view computation.