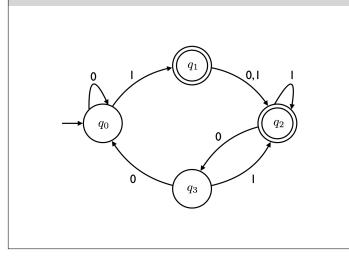
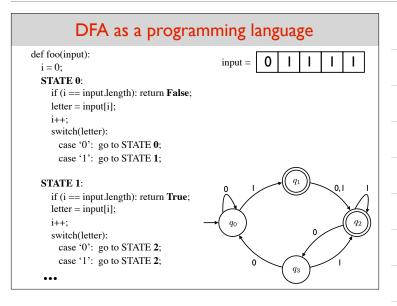
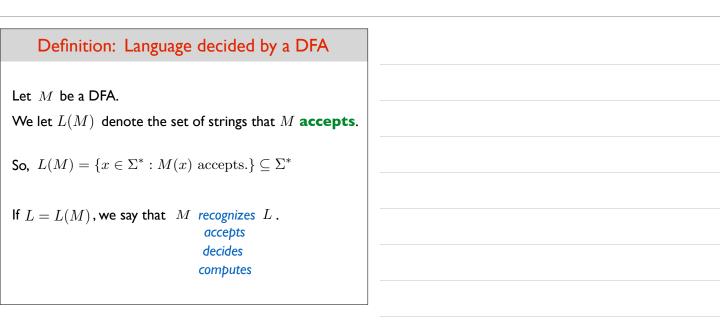
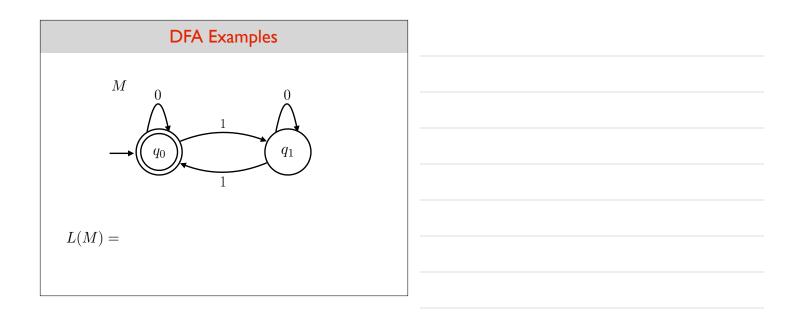


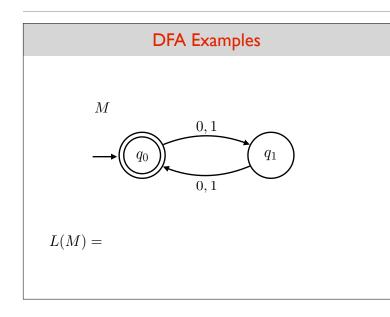
Anatomy of a DFA

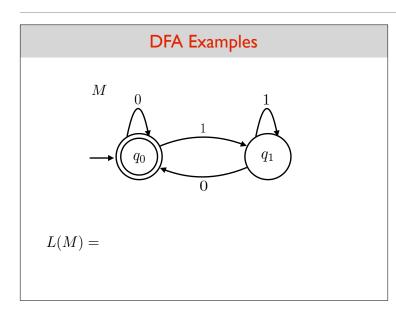


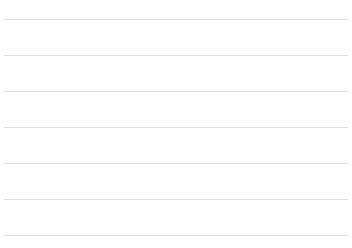


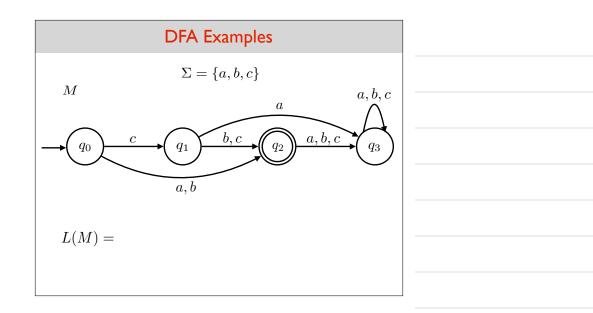


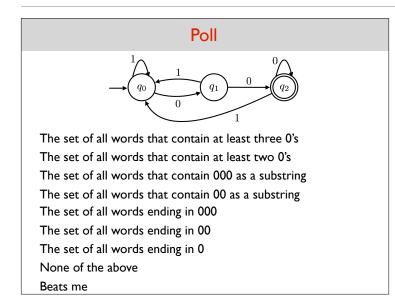








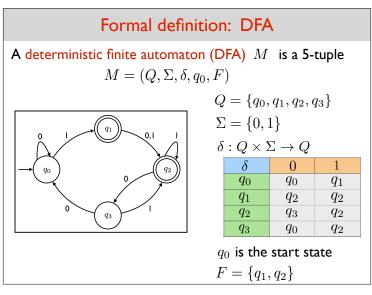




DFA construction practice

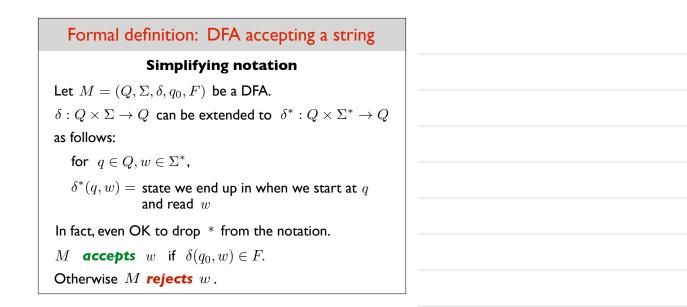
- $L = \{110, 101\}$
- $L = \{0, 1\}^* \setminus \{110, 101\}$
- $L = \{x \in \{0,1\}^* : x \text{ starts and ends with same bit.}\}\$
- $L = \{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or } 3.\}$
- $L = \{\epsilon, 110, 110110, 110110110, \ldots\}$
- $L = \{x \in \{0,1\}^* : x \text{ contains the substring 110.}\}\$
- $L = \{x \in \{0,1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\}$

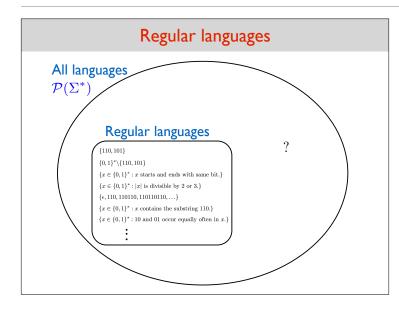
Formal definition: DFA
A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
where - Q
- Σ
- δ
- $q_0 \in Q$
- $F \subseteq Q$



e	
1	
2 2	
2	

Formal definition: DFA accepting a string
Let $w = w_1 w_2 \cdots w_n$ be a string over an alphabet Σ . Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
We say that M accepts the string w if there exists a sequence of states $r_0, r_1, \ldots, r_n \in Q$ such that
Otherwise we say M rejects the string w .

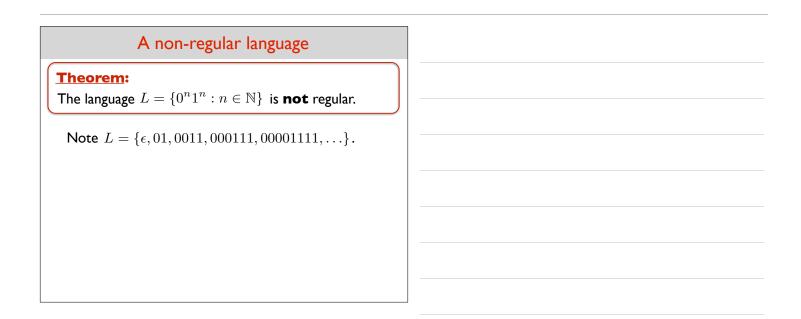




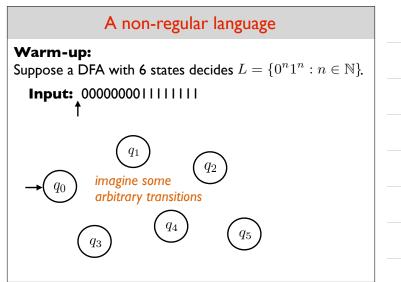
Regular languages

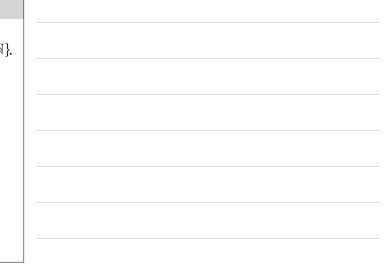
Questions:

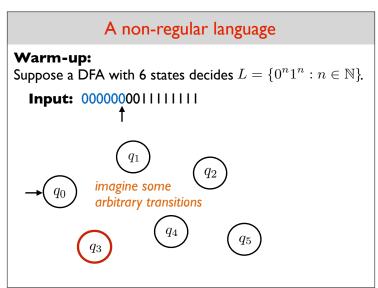
- I. Are all languages regular? (Are all decision problems computable by a DFA?)
- 2. Are there other ways to tell if a language is regular?

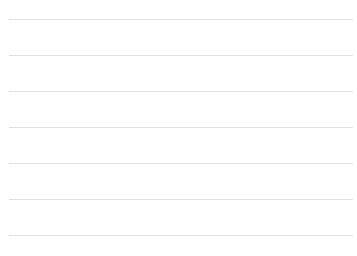


A non-regular language
Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.
Intuition:









A non-regular language

Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

Proof:

Proving a language is not regular		
What makes the proof work:		

Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

$$L = \{c^{251}a^n b^{2n} : n \in \mathbb{N}\}$$

 $(\Sigma = \{a, b, c\})$

