I5-25I Great Ideas in Theoretical Computer Science

Lecture 4: Deterministic Finite Automaton (DFA), Part 2

January 25th, 2018

Closure properties of regular languages

Closed under complementation

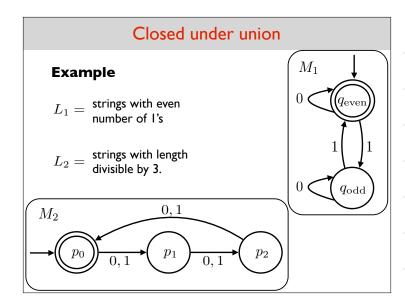
Proposition:

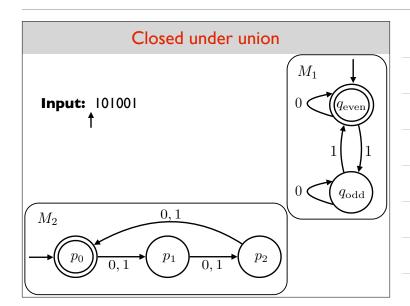
Let Σ be some finite alphabet.

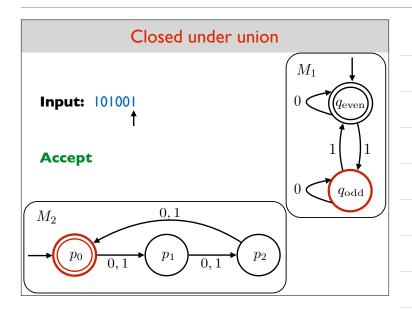
If $L \subseteq \Sigma^*$ is regular, then so is $\overline{L} = \Sigma^* \backslash L$.

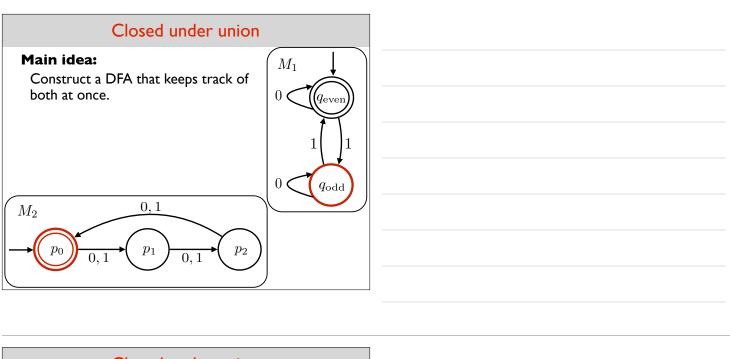
Proof:

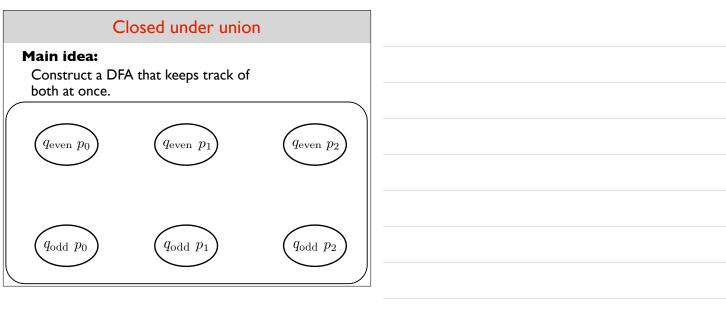
Closed under union	
Theorem:	
Let Σ be some finite alphabet. If $L_1\subseteq \Sigma^*$ and $L_2\subseteq \Sigma^*$ are regular, then so is $L_1\cup L_2$.	
Proof:	
	1
<u>The mindset</u>	
Step I: Imagining ourselves as a DFA	





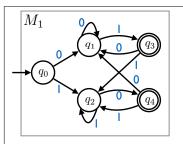


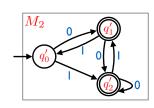




Closed under union	
Proof: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA deciding L_1 and $M'=(Q',\Sigma,\delta',q_0',F')$ be a DFA deciding L_2 . We construct a DFA $M''=(Q'',\Sigma,\delta'',q_0'',F'')$	
that decides $L_1 \cup L_2$, as follows:	
	٦
More closure properties	
Closed under union:	
Closed under concatenation:	
Closed under star:	
super awesome vs regular	
What is the relationship between super awesome and regular?	

Step I: Imagining ourselves as a DFA

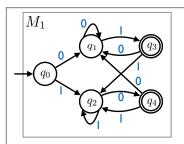


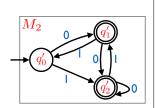


Given $w\in \Sigma^*$, we need to decide if $w=uv\quad \text{for}\quad u\in L_1,\ v\in L_2.$

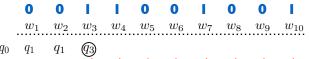
Problem: Don't know where u ends, v begins.

When do you stop simulating M_1 and start simulating M_2 ?

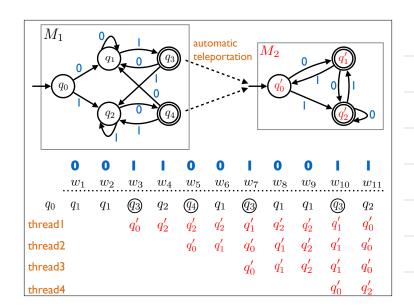


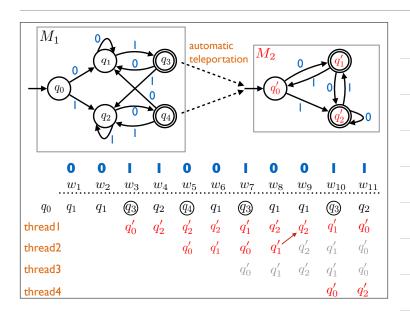


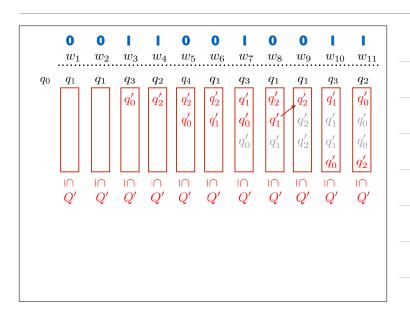
Suppose God tells you $\,u\,$ ends at $\,w_3$.



thread:







$M_1 = (Q, \Sigma, \delta, q_0, F)$ $M_2 = (Q', \Sigma, \delta', q'_0, F')$ $Q'' =$ δ'' : $P'' =$	Step 2 : Formally defining the DFA	
$Q'' = \frac{1}{\delta''}$ $\frac{1}{\delta''} = \frac{1}{\delta''}$		
δ'' :	$M_1 = (Q, \Sigma, \delta, q_0, F)$ $M_2 = (Q', \Sigma, \delta', q'_0, F')$	
$q_0^{\prime\prime}=$		
	Q'' =	-
E" _		
	$\delta^{\prime\prime}$:	