I5-25I Great Ideas in Theoretical Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 25th, 2018 ## Closure properties of regular languages ## Closed under complementation ## **Proposition:** Let Σ be some finite alphabet. If $L \subseteq \Sigma^*$ is regular, then so is $\overline{L} = \Sigma^* \backslash L$. **Proof:** | Closed under union | | |--|---| | Theorem: | | | Let Σ be some finite alphabet. If $L_1\subseteq \Sigma^*$ and $L_2\subseteq \Sigma^*$ are regular, then so is $L_1\cup L_2$. | | | | | | Proof: | | | | | | | | | | | | | 1 | | | | | <u>The mindset</u> | Step I: Imagining ourselves as a DFA | | | | | | | | | | | | Closed under union | | |---|---| | Proof: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA deciding L_1 and $M'=(Q',\Sigma,\delta',q_0',F')$ be a DFA deciding L_2 . We construct a DFA $M''=(Q'',\Sigma,\delta'',q_0'',F'')$ | | | that decides $L_1 \cup L_2$, as follows: | | | | | | | | | | | | | | | | ٦ | | More closure properties | | | Closed under union: | | | | | | Closed under concatenation: | | | | | | Closed under star: | | | | | | | | | | | | super awesome vs regular | | | What is the relationship between super awesome and regular? | **Step I**: Imagining ourselves as a DFA Given $w\in \Sigma^*$, we need to decide if $w=uv\quad \text{for}\quad u\in L_1,\ v\in L_2.$ **Problem:** Don't know where u ends, v begins. When do you stop simulating M_1 and start simulating M_2 ? Suppose God tells you $\,u\,$ ends at $\,w_3$. thread: | $M_1 = (Q, \Sigma, \delta, q_0, F)$ $M_2 = (Q', \Sigma, \delta', q'_0, F')$ $Q'' =$ δ'' : $P'' =$ | Step 2 : Formally defining the DFA | | |--|---|---| | $Q'' = \frac{1}{\delta''}$ $\frac{1}{\delta''} = \frac{1}{\delta''}$ | | | | δ'' : | $M_1 = (Q, \Sigma, \delta, q_0, F)$ $M_2 = (Q', \Sigma, \delta', q'_0, F')$ | | | $q_0^{\prime\prime}=$ | | | | | Q'' = | - | | | | | | | | | | E" _ | | | | | $\delta^{\prime\prime}$: | |