

Goal of this lecture: Define Turing machines. Understand how they work. Goal of next lecture: Explore physical, philosophical, historical questions surrounding Turing machines.

Solving 0ⁿlⁿ in Python

def foo(input): i = 0 j = len(input) - 1 while(j >= i): if(input[i] != '0' or input[j] != '1'): return False i = i + 1 j = j - 1 return True

	Turing machine description
ST	ATE 0: switch(letter under the head): case 'a': write 'b'; move Left; go to STATE 2; case 'b': write 'ப'; move Right; go to STATE 0; case 'u': write 'b'; move Left; go to STATE 1;
At each step, you have to:	
Don't want to change the symbol:	
Want to	o stay put:
Don't v	vant to change state:

Exercise

Let $\Sigma = \{a, b\}.$

Draw the state diagram of a TM that accepts a string iff it starts and ends with an a.

Formal definition: Turing machine	
A Turing machine (TM) M is a 7-tuple	
$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{ m acc}, q_{rej})$ where	
- Q	
- Σ	
- Γ	
- ð	
- $q_0 \in Q$	
- $q_{\rm acc} \in Q$	
- $q_{ m rej} \in Q$, $q_{ m rej} eq q_{ m acc}$	

Formal definition: TM accepting a string	
A bit more involved to define rigorously.	
Not too much though.	
See course notes.	

DFAs vs TMs

Some TM subroutines and tricks

- Move right (or left) until first $\ \sqcup$ encountered
- Shift entire input string one cell to the right
- Convert input from

 $x_1x_2x_3\ldots x_n$ to $\sqcup x_1\sqcup x_2\sqcup x_3\ldots\sqcup x_n$

- Simulate a big $\ \Gamma \$ by just $\{0,1,\sqcup\}$
- "Mark" cells. If $\Gamma = \{0, 1, \sqcup\}$, extend it to $\Gamma = \{0, 1, 0^{\bullet}, 1^{\bullet}, \sqcup\}$
- Copy a stretch of tape between two marked cells into another marked section of the tape

- Implement basic string and arithmetic operations
- Simulate a TM with 2 tapes and heads
- Implement basic data structures
- Simulate "random access memory"
 - :
- Simulate assembly language

You could prove this <u>rigorously</u> if you wanted to.

