15-251
Great Ildeas in
Theoretical Computer Science

Lecture 5:
Turing’s Legacy: Turing Machines

January 30th, 2018

This Week

input output
—>
data data

What is computation?
What is an algorithm?

How can we mathematically define them?

Goal of this lecture:
Define Turing machines.

Understand how they work.

Goal of next lecture:

Explore physical, philosophical, historical questions

surrounding Turing machines.

Let’s assume two things about our world

I. No “universal” machines exist.

(4 o] o] o

2. We only have machines to solve decision problems.

DFA: state diagram + input tape

o (i]r o1 ulofulofu] -

tape head “blank” symbol

DFA: state diagram + input tape

Lifofr[i]rfolr|ululufulu].e

Decision: Accept

DFA as a programming language
def foo(input):
i=0: input:|0|||||||||
STATE 0:
if (i == input.length): return False;
letter = input[i];
i++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

machine = algorithm describing it

input output
—>
data data
algorithm
input output
data data

What is computation?
What is an algorithm?

How can we mathematically define them?

The properties we want from the definition:

~C\)

1900

Goal is to

1936 2015

reach the definition of a Turing machine.

input output
—>
data data

2 important observations:

Solvable with any
computing device

Factoring

Onln

Regular languages
isPrime

EvenLength

Solving OnInin Python

def foo(input):
i=0
j=len(input) - 1
while(j >=1):
if(input[i] != ‘0’ or input[j] !=‘1"):
return False
i=i+1
j=j-1
return True

Solving On[nin C

int foo(char input[])

{
inti=0,j;
while(input[j] != NULL) /* NULL is end-of-string character */
j++s
=
while(j >=1)
{
if(input[i] != ‘0’ Il input[j] !=‘1")
return 0; /* Reject */
i++;
=
¥
return 1; /* Accept */
b

Solvable with Python???

Factoring

Onln

Regular languages

isPrime

EvenLength

Should we define computable to mean
what is computable by a Python function/program?

Downsides as a formal definition?

So what we want is:

Turing machine description

TM =~ DFA + infinite tape

3 2 -1 0 I 2 3 4 5 6 7 8 9 10 11 12 13
Jlololalale[aufu]ulo]oululolo o]l

Turing machine description

TM =~ DFA + infinite tape

3 2 -l 0 I 2 3 4 5 6 7 8 9 10 Il 12 13
Jlululalale|a|ufululu]ululululu]u]l

TM could have been defined as a sequence of instructions,
where the allowed instructions are:

> Move the head left

> Move the head right

>Write a symbol a (from the alphabet)

> |f head is reading symbol a, GOTO step j
> Halt and accept

> Halt and reject

But, we want to keep the definition as simple as possible.

Turing machine description

TM =~ DFA + infinite tape

3 -2 -l 0 I 2 3 4 5 6 7 8 9 10 11 12 13
JJulola]alba|ufu]ulo]u]ufululo]u]l

So aTM is a sequence of steps (states), each looking like:

STATE 0:
switch(letter under the head):
case ‘a’: write ‘b’; move Left; go to STATE 2;
case ‘b’: write ‘L’; move Right; go to STATE 0;
case ‘L’: write ‘b’; move Left; go to STATE 1;

Turing machine description

STATE 0:
switch(letter under the head):
case ‘a’: write ‘b’; move Left; go to STATE 2;
case ‘b’: write ‘L7; move Right; go to STATE 0;
case ‘L’: write ‘b’; move Left; go to STATE 1;

At each step, you have to:

Don’t want to change the symbol:

Want to stay put:

Don’t want to change state:

Turing machine official picture

3 2 -1 0 I 2 3 4 5 6 7 8 9 10 Il 12 13
Jlufulalale|a|ulululufulu]lulu]u]u]l

Input: aaba

def M(input):
i=0
STATE 0:
letter = input[i];
switch(letter):
case ‘a’: input[i]
case ‘b’: inputl[i]
case * ’: inputli]
STATE a:
letter = input[i];
switch(letter):
case ‘a’: input[i]
case ‘b’: input[i]
case * ’: input[i]

=‘’; i++; go to STATE a;
=", i++; go to STATE b;

= ‘", i++; go to STATE rej;

3
¢
3

’;i--; go to STATE acc;
’;i--; go to STATE rej;
=‘’;i--; go to STATE rej;

‘
3
3

The machine accepts a string x if and only if:

Exercise

Let ¥ = {a,b}.

Draw the state diagram of a TM that accepts a string
iff it starts and ends with an a.

Formal definition: Turing machine
A Turing machine (TM) M isa 7-tuple

M = (Q'} Ev Fv 57 40, Gacc) Qrej)
where

- Q
>

-

- o €Q
= Gacc S Q
- Qrej € Q, Grej 7 Qacc

Formal definition: TM accepting a string

A bit more involved to define rigorously.
Not too much though.

See course notes.

DFAs vs TMs

Definition: decidable/computable languages

Let M be aTuring machine.
We let L(M) denote the set of strings that M accepts.
So, L(M) = {x € ¥* : M(z) accepts.}

What is the analog of regular languages in this setting?

Definition:

Definition:

?
regular languages = decidable languages

Turing machine that decides OnIn

> ={0,1} I'={0,1,#,U}

(Omitted information

~ , defined arbitrarily.
Gdone?)« Missing transitions

go to the reject state.)

Turing machine that decides On|n

Jlulufofofofof o] |1 |ululujulu]ull

Input: 00001011

Turing machine that decides O |n

Julul#|#l#lo] 1]o#|#|uju]u]uJufuls

Input: 0000101 | Decision: reject

Some TM subroutines and tricks

- Move right (or left) until first LI encountered
- Shift entire input string one cell to the right
- Convert input from
123 ...Tyn to UriUxoUxs...Ux,
- Simulate a big I' by just {0, 1, U}
-“Mark” cells. If T'={0,1,U}, extend it to
r={0,1,0%1° U}

- Copy a stretch of tape between two marked cells
into another marked section of the tape

Some TM subroutines and tricks

- Implement basic string and arithmetic operations
- Simulate a TM with 2 tapes and heads
- Implement basic data structures

- Simulate “random access memory”

- Simulate assembly language
You could prove this rigorously if you wanted to.

So what we want is:

A totally minimal (TM) programming language such that
- it can simulate simple bytecode /
(and therefore Python, C, Java, SML, etc...)

- it is simple to define and reason about completel
mathematically rigorously /

A note

You could describe aTM in 3 ways:

Low level description

Medium level description

High level description

Important Question

Is TM the right definition?

Is there a reasonable definition of “algorithm”
that can compute more languages than TM-decidable ones?

Solvable with any computing device

? TM-decidable

Factoring

On|n

Regular languages
isPrime

EvenLength

