
January 30th, 2018

15-251
Great Ideas in

Theoretical Computer Science
Lecture 5:

Turing’s Legacy: Turing Machines

input
data

output
data“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

This Week

Goal of this lecture:

Goal of next lecture:

Define Turing machines.

Understand how they work.

Explore physical, philosophical, historical questions
surrounding Turing machines.

Let’s assume two things about our world

1. No “universal” machines exist.

2. We only have machines to solve decision problems.

+ isPrime Sorting DFA
|x| even?

DFA: state diagram + input tape

…1 0 1 1 1 0 1 t t t t t

“blank” symboltape head

DFA: state diagram + input tape

…1 0 1 1 1 0 1 t t t t t

Decision: Accept

DFA as a programming language

0 1 1 1 1input =
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;
 …

machine ≈ algorithm describing it

input
data

output
dataa DFA

algorithm

input
data

output
data“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

The properties we want from the definition:

19361900 2015

Goal is to reach the definition of a Turing machine.

input
data

output
data“computer”

2 important observations:

Regular languages

EvenLength
...

isPrime

0n1n

Factoring

...

Solvable with any
computing device

Solving 0n1n in Python

def foo(input):
 i = 0
 j = len(input) - 1
 while(j >= i):
 if(input[i] != ‘0’ or input[j] != ‘1’):
 return False
 i = i + 1
 j = j - 1
 return True

Solving 0n1n in C

int foo(char input[])
{
 int i = 0, j;
 while(input[j] != NULL) /* NULL is end-of-string character */
 j++;
 j—;
 while(j >= i)
 {
 if(input[i] != ‘0’ || input[j] != ‘1’)
 return 0; /* Reject */
 i++;
 j—;
 }
 return 1; /* Accept */
}

Regular languages

EvenLength
...

isPrime

0n1n

Factoring

...

Solvable with Python???

Should we define computable to mean
what is computable by a Python function/program?

Downsides as a formal definition?

So what we want is:

Turing machine description

TM ~ DFA + infinite tape~

a a b a t t t t tt t t t t tttt
0 1 2 3 4 5 6 7 8 9 10 11 12 13-1-2-3

Turing machine description

TM could have been defined as a sequence of instructions,
where the allowed instructions are:

a a b a t t t t tt t t t t tttt
0 1 2 3 4 5 6 7 8 9 10 11 12 13-1-2-3

> Move the head left
> Move the head right
> Write a symbol a (from the alphabet)
> If head is reading symbol a, GOTO step j
> Halt and accept
> Halt and reject

But, we want to keep the definition as simple as possible.

TM ~ DFA + infinite tape~

Turing machine description

a a b a t t t t tt t t t t tttt
0 1 2 3 4 5 6 7 8 9 10 11 12 13-1-2-3

So a TM is a sequence of steps (states), each looking like:

STATE 0:
 switch(letter under the head):
 case ‘a’: write ‘b’; move Left; go to STATE 2;
 case ‘b’: write ‘ ’; move Right; go to STATE 0;
 case ‘ ’: write ‘b’; move Left; go to STATE 1;t

t

TM ~ DFA + infinite tape~

Turing machine description

STATE 0:
 switch(letter under the head):
 case ‘a’: write ‘b’; move Left; go to STATE 2;
 case ‘b’: write ‘ ’; move Right; go to STATE 0;
 case ‘ ’: write ‘b’; move Left; go to STATE 1;t

t

At each step, you have to:

Don’t want to change the symbol:

Want to stay put:

Don’t want to change state:

Turing machine official picture

a a b a t t t t tt t t t t t

q0

qacc

qrejqa qb

b 7! t,L

b 7! t,L

a 7! t,L

a 7! t,L

a 7! t,R b 7! t,R

t 7! t,L t 7! t,L

t 7! t,R

ttt

Input: aaba

0 1 2 3 4 5 6 7 8 9 10 11 12 13-1-2-3

TM as a programming language

def M(input):
 i = 0
 STATE 0:
 letter = input[i];
 switch(letter):
 case ‘a’: input[i] = ‘ ’; i++; go to STATE a;
 case ‘b’: input[i] = ‘ ’; i++; go to STATE b;
 case ‘ ’: input[i] = ‘ ’; i++; go to STATE rej;
 STATE a:
 letter = input[i];
 switch(letter):
 case ‘a’: input[i] = ‘ ’; i--; go to STATE acc;
 case ‘b’: input[i] = ‘ ’; i--; go to STATE rej;
 case ‘ ’: input[i] = ‘ ’; i--; go to STATE rej;

...

Poll

The machine accepts a string x if and only if:

Exercise

Let .⌃ = {a, b}
Draw the state diagram of a TM that accepts a string
iff it starts and ends with an .a

Formal definition: Turing machine

where

- Q

- q0 2 Q

MA Turing machine (TM) is a 7-tuple
M = (Q,⌃,�, �, q0, qacc, qrej)

- qacc 2 Q

-

⌃

-

�

- , qrej 2 Q qrej 6= qacc

- �

Formal definition: TM accepting a string

A bit more involved to define rigorously.

Not too much though.

See course notes.

DFAs vs TMs

Definition: decidable/computable languages

What is the analog of regular languages in this setting?

MWe let denote the set of strings that accepts.

M

L(M)

So, L(M) = {x 2 ⌃⇤ : M(x) accepts.}

Let be a Turing machine.

Definition:

Definition:

regular languages = decidable languages
?

Turing machine that decides 0n1n

q0

qacc
qrej

q1qdone?

qleft qright

t 1

#

#
7!
R

0
7!

#
,R 0, 1 7! R

t
,#

7!
L

0, 1 7! L

1 7! #,L

0,
1
7!
L

(Omitted information
 defined arbitrarily.
 Missing transitions
go to the reject state.)

⌃ = {0, 1} � = {0, 1,#,t}

0,#

Turing machine that decides 0n1n

0 0 0 0 t t t tt t t t t t1 0 1 1

Input: 00001011

Turing machine that decides 0n1n

0 t t t tt t t t t t1 0

Input: 00001011

##

Decision: reject

Some TM subroutines and tricks

- Shift entire input string one cell to the right

 to

- Convert input from
x1x2x3 . . . xn tx1 t x2 t x3 . . . t xn

- Simulate a big by just � {0, 1,t}

- “Mark” cells. If , extend it to � = {0, 1,t}
� = {0, 1, 0 , 1 ,t}

- Copy a stretch of tape between two marked cells
 into another marked section of the tape

t- Move right (or left) until first encountered

Some TM subroutines and tricks

- Implement basic string and arithmetic operations

- Simulate a TM with 2 tapes and heads

- Implement basic data structures

- Simulate “random access memory”

- Simulate assembly language

...

You could prove this rigorously if you wanted to.

A totally minimal (TM) programming language such that

- it can simulate simple bytecode

So what we want is:

(and therefore Python, C, Java, SML, etc…)

- it is simple to define and reason about completely
 mathematically rigorously

A note

You could describe a TM in 3 ways:

Low level description

Medium level description

High level description

Is there a reasonable definition of “algorithm”
that can compute more languages than TM-decidable ones?

Is TM the right definition?

Important Question

Regular languages

TM-decidable

EvenLength
...

isPrime

0n1n

Factoring

...

Solvable with any computing device

?

