

Last TimeA Turing machine (TM) M is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where- Q is a finite set (which we call the set of states);- Σ is a finite set with $\sqcup \notin \Sigma$
(which we call the input alphabet);- Γ is a finite set with $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$
(which we call the tape alphabet);- δ is a function of the form $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

- (which we call the transition function);
- $q_0 \in Q$ (which we call the start state);
- $q_{\mathrm{acc}} \in Q$ (which we call the accept state);
- $q_{\mathrm{rej}} \in Q$, $q_{\mathrm{rej}}
 eq q_{\mathrm{acc}}$ (which we call the reject state);

Last Time Definition: A TM is called a *decider* if it halts on all inputs. Definition: A language L is called *decidable* (computable) if L = L(M) for some <u>decider</u> TM M. Theorem: Any language that can be computed in Python, C, Java, etc. can be decided by a TM.

QUESTIONS

2 of Hilbert's Problems

Hilbert's 10th problem (1900)

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

e.g.
$$5x^2yz^3 + 2xy + y - 99xyz^4 = 0$$

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

e.g. $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3) \land (x^n + y^n = z^n)$

(Mechanization of mathematics)

Turing's thinking	

Turing's legacy	
The beauty of his definition:	

What else did Turing do in his paper?

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

e.g. $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3) \land (x^n + y^n = z^n)$

(Mechanization of mathematics)

What else	e did Turing do in his paper?
-	Jniversal Machine machine to rule them all)
We could use: $\langle M angle =$	<pre>def foo(input): i = 0 STATE 0: letter = input[i]; switch(letter): case 'a': input[i] = ' '; i++; go to STATE a; case 'b': input[i] = ' '; i++; go to STATE b; case ' ': input[i] = ' '; i++; go to STATE rej; STATE a: letter = input[i]; switch(letter): case 'a': input[i] = ' '; i; go to STATE acc; case 'b': input[i] = ' '; i; go to STATE rej; case ' : input[i] = ' '; i; go to STATE rej; } } </pre>

Perhaps Turing and others weren't ambitious enough!

Solvable by any physical process

Solvable by a TM

||| ???

What is the simplest universe you can create that has the same computational capacity of our universe?

Conway's Game of Life

Imagine an infinite 2D grid.

Each cell can be dead or alive.

Laws of physics

Loneliness: live cell with fewer than 2 neigbors dies.

Overcrowding: live cell with more than 3 neighbors dies.

Procreation: dead cell with exactly 3 neighbors gets born.

Conway's Game of Life	
Can a TM simulate any instance of Game of Life?	
Can Game of Life simulate any TM?	
Can Game of Life simulate Game of Life?	

Working as a TA for 15-112

Similar but simpler looking languages:

 $\operatorname{ACCEPTS} = \{ \langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } x \in L(M) \}$

 $\text{EMPTY} = \{ \langle M \rangle : M \text{ is a TM s.t. } L(M) = \emptyset \}$

Poll

Which ones do you think are decidable?

 $ACCEPTS_{DFA} = \{ \langle D, x \rangle : D \text{ is a DFA and } x \in \Sigma^* \text{ s.t. } x \in L(D) \}$

SELF-ACCEPTS_{DFA} = { $\langle D \rangle : D$ is a DFA s.t. $\langle D \rangle \in L(D)$ }

 $\mathrm{EMPTY}_{\mathrm{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } L(D) = \emptyset \}$

 $\mathrm{EQ}_{\mathrm{DFA}} = \{ \langle D_1, D_2 \rangle : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2) \}$

ACCEPTS _{DFA}
ACCEPTS _{DFA} = { $\langle D, x \rangle : D$ is a DFA and $x \in \Sigma^*$ s.t. $x \in L(D)$ }

	EMPTYDFA	
EMI	$\operatorname{PTY}_{\mathrm{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } L(D) = \emptyset \}$	

EQ _{DFA}
$EQ_{DFA} = \{ \langle D_1, D_2 \rangle : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2) \}$

Reduction	