15-251
Great Ildeas in
Theoretical Computer Science

Lecture 6:
Church-Turing Thesis + Decidability

February Ist, 2018

Last Time
A Turing machine (TM) M is a 7-tuple

M = (Q7 27 F7 67 40, Gacc> qTej)
where

- @ is afinite set (which we call the set of states);

- X is afinite set with LU ¢ X
(which we call the input alphabet);

- I' isafinitesetwith 1 €I and X C T
(which we call the tape alphabet);

- ¢ isafunction of the form §: Q@ xI' - @ x ' x {L,R}
(which we call the transition function);

- qo € ¢ (which we call the start state);

- Qacc € @ (Which we call the accept state);

- Groj € Q, Grej 7 Gace (Which we call the reject state);

Last Time

Definition: ATM is called a decider if it halts on all
inputs.

Definition: A language L is called decidable (computable)
if L =L(M) for some decider TM M.

Theorem: Any language that can be computed
in Python, C, Java, etc. can be decided by a TM.

QUESTIONS

2 of Hilbert’s Problems e
Hilbert’s 10th problem (1900) z
Is there a finitary procedure to determine if a given

multivariate polynomial with integral coefficients has an
integral solution?

eg. 5x?yz® + 2xy +y — 992yz* =0

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity
of a given logical expression?

eg ~dzr,y,z,neN:(n>3)A (2" +y" =2")

(Mechanization of mathematics)

The quest for the right definition

input output
data data
(T;tt};:::t“):al (True or False)

o BN

“Alright, let’s define this thing mathematically.”

Turing’s thinking

Turing’s legacy

The beauty of his definition:

Simplicity
I. simplicity

a reasonable definiton of computation

|

strong enough to capture computation the way TMs do.

Generality

2. “clearly” captured what a human does
given a set of instructions.

Church-Turing Thesis

What else did Turing do in his paper?

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity
of a given logical expression?

eg —Ir,y,z,neN:(n>3)A@"+y" =2")

(Mechanization of mathematics)

Entscheidungsproblem Are there others?

Decidable languages

Factoring

Onln

Regular languages
isPrime
EvenlLength

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

) [orme) [[t

Do we really need a separate machine for each task?

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

input
data

output
data

A human is a universal machine:

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

) [rrme] [e

All can be encoded!
(e.g. think source code)

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

We could use:)
def foo(input):

i=0
STATE 0:
letter = input[i];
switch(letter):
< /\ jz > PR case ‘a’: input[i] = * ’; i++; go to STATE a;
- case ‘b’: input[i] = * ’; i++; go to STATE b;
case * ’: input[i] = “ ’; i++; go to STATE rej;
STATE a:
letter = inputl[i];
switch(letter):
case ‘a’: input[i] = “ ’; i--; go to STATE acc;
case ‘b’: input[i] = “ ’; i--; go to STATE rej;
case * ’: input[i] = ’; i--; go to STATE rej;

Code is data!

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

thisisaTM

< > UNIVERSAL

MACHINE
X —

output of the TM
on input x

Could you write a Python function that does this?

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

This is exactly what an interpreter does.

Python output of the

Python program
Interpreter on input x

Code is data!

The positive side The negative side

20 A M. Tomve [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION 10
THE ENTSCHEIDUNGSPROBLEM

By A. M. Tursxe.
(Receive 28 May, 1936.—Read 12 Sovernber, 1936

The *“computable” numbers may be described briefly as the real
numbers whose expressions as # decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally casy to define and investigate computable functions
of an integral vatiable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each d T have chosen

for explicit treatment as involving the least cumbrous tachnique. T hope
shortly to give an account of the relations of the computable numbers,
funotions, and so forth to one another. This will inolude a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. - According to my definition, & number is computable
ifits decimal can be written down by a machine.

Tnsgo. 101 with
computable numbers include all numbers which could naturally be
regarded as computable. In particular, T show that cortain large olassos
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
he numbers 7, ¢, etc. The not, ud
all Cefinable numbers, and an example is given of definable number
which is not computable

Although the class of computable numbers is so great, and in many
ways similar 0 the class of real numbers, it is nevortheless onumerable.
Tn§sT

By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

1 Goda, “Ubar formal unentscheidhars Satza dor Brincipia Mathemetion uad ver-
wandter Systeme, 17, Monotelefis M. Phye. 38 (1031, 175-105

1936 1912 - 1954

Perhaps Turing and others weren’t ambitious enough!

—
“)5 Solvable by any physical process [\,_Q‘r

Solvable by aTM

1444
eoe

Physical Church-Turing Thesis

Physical Church-Turing Thesis

What can be computed in this universe, by any physical
process or device, can by computed by a (rand.) TM.

Why should we expect this to be true?

Strong Physical Church-Turing Thesis

What can be computed efficiently in this universe,
by any physical process or device, can by computed
efficiently by a QTM.

This is the grand unification/simplification
of computation!!

All types of computation

This is the grand unification/simplification
of computation!!

Python
v
(M3 . q

Al types of computation

Complex things can be explained by simple rules.

Implications

1. Studying the power and limits of TMs

=P Studying the power and limits of our universe

(Can you come up with laws of physics that would allow it to
compute any problem?)

2. Computation in its full generality is everywhere.
Even in extremely simple systems!

(What is the simplest universe you can create that has the same
computational capacity of our universe?)

3. The universe may be a simulation. (a philosophical musing)

What is the simplest universe you can create that has
the same computational capacity of our universe!?

Conway’s Game of Life

o
. . . - L
Imagine an infinite ., % . i :
. ol Tl PEE P I
2D grld. i ", | pimt ™ o il
e I T L
. R ' Rt " - "
| TR S, - 5
= "' m
wB ! auBaa) - I Bl B - "t
Each cell can be LM AL R T,
; T T PRE ¢
dead or alive. S Tr Tl . -l
= T]

Laws of physics
Loneliness: live cell with fewer than 2 neigbors dies.
Overcrowding: live cell with more than 3 neighbors dies.

Procreation: dead cell with exactly 3 neighbors gets born.

Conway’s Game of Life

Some Patterns

Periodic

Conway’s Game of Life

Can aTM simulate any instance of Game of Life?
Can Game of Life simulate any TM?

Can Game of Life simulate Game of Life?

That’s all for the Church-Turing Thesis.

Let’s talk decidability.

Languages involving encodings of machines

Code is data!

There are many interesting problems
where the input data is code.

Working as a TA for 15-112

Autograder program

student submission the correct program

isPrime isPrime

Do they return True on exactly the same inputs?

5
=
a.
=]
(0}
S
wn
N
—
>
o
S
»
1
N

Kosbie’s @_
version =\[returns True on Ti;lrje
exactly same inputs?
Student @& _~" Y P] False
submission =

Does such a program exist?

i.e., can we solve the following:

EQ = {(My, My) : My and My are TMs s.t. L(M;y) = L(Ma)}

Working as a TA for 15-112

Similar but simpler looking languages:

ACCEPTS = {(M,z) : M isa TM and = € ¥* s.t. z € L(M)}

EMPTY = {(M) : M is a TM s.t. L(M) = 0}

Poll

Which ones do you think are decidable?

ACCEPTSpra = {(D,z) : D is a DFA and = € ¥* s.t. z € L(D)}

SELF-ACCEPTSpra = {(D) : D is a DFA s.t. (D) € L(D)}

EMPTYpga = {(D) : D is a DFA s.t. L(D) = 0}

EQppa = {(D1,D3) : D1 and D, are DFAs s.t. L(D;1) = L(D3)}

ACCEPTSDrA

ACCEPTSpra = {(D,x) : D is a DFA and z € ¥* s.t. € L(D)}

SELF-ACCEPT Spra

SELF-ACCEPTSpps = {(D) : D is a DFA s.t. (D) € L(D)}

EMPTYDra

EMPTYpga = {(D) : D is a DFA s.t. L(D) = 0}

EQpra

EQppa = {(D1,Ds) : Dy and Dy are DFAs s.t. L(Dq) = L(Ds)}

Reduction

