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Personal Quirk 1 3

“Theoretical Computer Science (TCS)” sounds distracting–computers are
just a small part of the story.

I prefer Theory of Computation (ToC) and will refer to that a lot.

ToC:

computability theory

complexity theory

proof theory

type theory/set theory

physical realizability



Personal Quirk 2 4

To my mind, the exact relationship between physics and computation is
an absolutely fascinating open problem.

It is obvious that the standard laws of physics support computation
(ignoring resource bounds).



There even are people (Landauer 1996) who claim

. . . this amounts to an assertion that mathematics and com-
puter science are a part of physics.

I think that is total nonsense, but note that Landauer was no chump: in
fact, he was an excellent physicists who determined the thermodynamical
cost of computation and realized that reversible computation carries no
cost.

At any rate . . .



Note the caveat: “ignoring resource bounds.”

Just to be clear: it is not hard to set up computations that quickly
overpower the whole (observable) physical universe. Even a simple
recursion like this one will do.

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x,A(x+, y))

This is the famous Ackermann function, and I don’t believe its study is
part of physics.

And there are much worse examples.



But the really hard problem is going in the opposite direction: no one
knows how to axiomatize physics in its entirety, so one cannot prove that
all physical processes are computable.

Hilbert was the first to realize this and posed the following problem (#6
on his list) in 1900:

Mathematical Treatment of the Axioms of Physics.

The investigations on the foundations of geometry suggest
the problem: To treat in the same manner, by means of ax-
ioms, those physical sciences in which already today math-
ematics plays an important part; in the first rank are the
theory of probabilities and mechanics.



Personal Quirk 3 8
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Today: Diagonalization 10

set theory uncountability

computability unsolvability

complexity hardness, separation

proof theory Gödel incompleteness



Georg Cantor 11

Cantor single-handedly
invented modern set theory
in the late 19th century.

Incidentally, while studying
Fourier transforms.

You see, not all applications
are useless.



A Definition of Set 12

Here is a feeble first attempt at a “definition” of a set.

Definition

A set is an arbitrary collection of objects.

In the words of Cantor:

By an “aggregate” we are to understand any collection into
a whole M of definite and separate objects m of our intu-
ition or our thought. The objects are called “elements” of
M . In signs we express this thus: M = {m}.



Modern Notation 13

Cantor’s symbolic notation is rather old-fashioned. Nowadays, and
following G. Peano, one would usually write

M = {m | P (m) }

indicating that we wish to collect all objects m that have property P into
a set M . Upper/lower case letters are a feeble attempt at typing.

This set formation principle is the core of set theory. Unfortunately, in its
full unrestricted form it also causes major problems.



Frege’s Axioms 14

As part of his foundational work in logic, G. Frege developed a set theory
that essentially boils down to just two axioms.

Extensionality

x = y if ∀ z (z ∈ x ⇐⇒ z ∈ y)

Formation
For any property P (z):

∃x∀ z (z ∈ x ⇐⇒ P (z))

The quantifiers here all range over the collection of all sets. Note that by
Extensionality the set x in Formation is unique.



Inconsistency 15

Russell realized that Frege’s system has internal contradictions. Fixes:

Frege changed his axioms; unfortunately causing his universe to have
only one element.

Russell invented type theory; horrible system (reducibility axiom)
that no one uses.

Zermelo-Fraenkel, von Neumann-Gödel-Bernays, Kelly-Morse:
reasonable axiom systems, not terribly complicated.

Practical Advice: Simply ignore all these proplems.

“A foolish consistency is the hobgoblin of little minds” R. W. Emerson



A Century’s Worth of Experience 16

. . . shows that these two axioms are enough to construct all of math and
computer science.

This is a white lie, but more than good enough for our purposes.

Set theory provides an extremely powerful and even elegant way to
organize and structure any discourse in math and computer science.

It has become the de facto gold standard: a rigorous argument is one
that can be reconstructed in terms of set theory (at least in principle).
Bourbaki’s whole oeuvre is built on this idea, and has conquered the
world of math.

Bourbaki is cilantro.

https://en.wikipedia.org/wiki/Nicolas_Bourbaki


Assembly Language 17

As a ToC person, you can think of set theory as a universal assembly
language: any mathematical concept such as integer, rational, real,
series, function, integral, vector field, finite field, . . . can be interpreted as
a set. With a little more work we get machines, languages, problems,
complexity classes, . . .

This interpretation may be overly technical, and wreak havoc on our
cherished intuitions, but it provides a rock-solid foundation: all ambiguity
evaporates, all proofs are perfectly reliable (and they can be carried out
by machines). But at a cost . . .

Things tend to get very formal, abstract and technical. Sometimes overly.



Charles Hermite 18

The impression that Cantor’s
memoirs produce on us is disastrous.
Reading them seems to us a
complete torture . . . Even
acknowledging that he has opened
up a new field of research, none of
us is tempted to follow him. It has
been impossible for us to find,
among the results that can be
understood, just one that possesses
a real and present interest.

(Proved that e is transcendental.)



And Yet . . . 19

Bourbaki-style arguments
have been the gold standard
for more than half a century.

This will not change any time
soon. If you want to work in
ToC, you have no choice.

Cilantro.



Aside: The Problem With Definitions 20

Beware: When you try to come to grips with a new concept (like DFA or
TM), it is entirely pointless to simply stare at the formal, set-theoretic
definition. Instead, create a little table in your mind:

intuitive meaning

formal definition

examples

counterexamples

basic results

Bad things happen to people who cling solely to formal definitions.



Rant 21

Some people tell you that definitions are incapable of being wrong.

That is complete nonsense.

In formal logic, definitions are indeed defined as arbitrary abbreviations.

In the real world, definitions have a clear cognitive purpose: they must
help to organize your thought and your arguments.

If they don’t, they are wrong.

Ask Cauchy about continuity.



Today’s Challenge: The Size of a Set 22

We want to make sense out of the concept of the size of a set.

This seems quite straightforward for simple sets like

A = {∅, 42,4,�}

Clearly, A has size 4.

More generally, if a set looks like

A = {a0, a1, a2, . . . , an−1}

then it has size n (here we assume tacitly that the enumeration does not
contain any repetitions).



The Real Challenge: Infinity 23

So we can handle finite sets (more later).

But what should we do with infinite sets like

N,Z,Q,R,C,N→ N,R→ R,Σ?, trees, ugraphs,TMs, . . .

Simply calling them all “infinite” is not good enough.



Cardinality 24

If you don’t understand something, enshrine it in a preliminary definition.

Definition

The size of a set A is called its cardinality or cardinal number and written
symbolically as |A|.

This is really a figure of speech more than a definition, it says nothing
about the nature of cardinal numbers. In the words of G. Cantor:

Every aggregate M has a definite “power,” which we also
call its “cardinal number.”
. . . the general concept which, by means of our active faculty
of thought, arises from the aggregate M when we make
abstraction of the nature of its various elements m and of
the order in which they are given.



The “Easy” Case 25

So how do we define a cardinal number?

For finite sets we clearly want to use natural numbers as cardinals.
Everybody understands the naturals, right?

Awkward Question: What is a natural number?

This sounds like an inane question, but remember: we would like to be
able to trace everything back to a set, at least in principle.

How should we model natural numbers as sets?



von Neumann Ordinals 26

John von Neumann was one of the leading mathematicians of the 20th
century, and did groundbreaking work in CS.

Here is his answer. Recursively define

n = {0, 1, . . . , n− 1}

So, we use ∅ to model zero, and, to increase a finite ordinal by one, we
apply the successor function S(x) = x ∪ {x}

n+ 1 = S(n) = n ∪ {n}



Awful Notation 27

n n
0 ∅
1 {∅}
2 {∅, {∅}}
3 {∅, {∅}, {∅, {∅}}}
4 {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

Positively awful to look at, we’ll stick to our standard notation and write
things like 5 and 42. This is similar to the difference between assembly
and Python.

But the point is that a von Neumann ordinal n is the prototype of a finite
set of size n; in a sense it is the most basic set with n elements.



WTF? 28

Isn’t this overly complicated? Why not simply represent 4 as

{ { { { { } } } } }

Absolutely, this coding is easier to define. But it’s much harder to use.

But here is the killer: von Neumann’s definition carries over beautifully to
infinite numbers, the simpleton approach collapses miserably.



Lining Things Up 29

For a set A to have finite size n means we can write a two-column table:
0, . . . , n− 1 in column one, the elements of A in column two.

0 ♥
1 ♦
2 ♣
3 ♠

More formally, we need a bijection

f : n←→ A

for some n.



Remember “Adjacent” Permutations? 30

How many are there? What is the cardinality of Pn?



Counting 31

Show that |Pn| ≥ 2|Pn−1| and |Pn| ≤ 2|Pn−1|.

Find an (easily computable) bijection f : 2n−1 → Pn .

Both require a little analysis of adjacent permutations.



Comparing Cardinality 32

G. Cantor suggests the following method to determine whether two sets
have the same size:

We say that two aggregates M and N are “equivalent” if
it is possible to put them, by some law, in such a relation
to one another that to every element of each one of them
corresponds one and only one element of the other.

This idea was not new, Galileo Galilei already used it to show that there
are as many squares as there are naturals.
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And Infinite Sets? 34

Time to get serious: how do we make sense out of |A| when A fails to be
finite?

N,Z,Q,R,C,N→ N,R→ R,Σ?, trees, ugraphs,TMs, . . .

As already mentioned, one can generalize von Neumann ordinals to the
infinite case. Alas, this leads deep into to the swamp of set theory, so we
try to weasel around it. Take a look at ordinals if you want to know
more.

A closer look at the finite case shows that we can deal with cardinal
numbers without knowing what they are . . .

http://www.cs.cmu.edu/~cdm/pdf/50-ordinals.pdf


A Dirty Trick 35

We can compare cardinalities without having to worry about the
ontological status of a cardinal number.

Definition

Let A and B be two arbitrary sets.

|A| = |B| ⇐⇒ ∃ f bijective (f : A←→ B )

|A| ≤ |B| ⇐⇒ ∃ f injective (f : A −→ B )

|A| ≥ |B| ⇐⇒ ∃ f surjective (f : A −→ B )

Sets with the same cardinality are called equipotent or equinumerous.



Basic Sanity Check 36

At the very least, “same-cardinality” should be an equivalence relation.

reflexive: IA : A←→ A

symmetric: f : A←→ B yields f−1 : B ←→ A

transitive: f : A←→ B and g : B ←→ C yields f ◦ g : A←→ C

So far, so good.

Likewise, “at-most-same-cardinality” is a pre-order (reflexive and
transitive).

But it’s not a partial order: the whole point of cardinality is to compare
different sets.

Comparability holds, given sufficiently strong axioms of set theory (AC).



More Sanity 37

Lemma

There is an injection f : A→ B if, and only if, there is a surjection
g : B → A .

Proof.

Assume A 6= ∅ and let f be the injection. Pick a0 ∈ A and set

g(b) =

{
a if f(a) = b,

a0 if b /∈ rng f.

Assume g is a surjection. Hence, for each a ∈ A, there exists an b ∈ B
such that g(b) = a. Pick one such b, say, b0, and set f(a) = b0.

2



Yet More Sanity 38

Theorem (Cantor-Schröder-Bernstein)

Suppose f : A→ B and g : B → A are injective.
Then A and B have the same cardinality.

Incidentally, Cantor had no proof, Schröder had a wrong proof, Bernstein
had correct proof, but Dedekind had a better proof.

At any rate, the result makes sure that, for all cardinals κ and λ,

κ ≤ λ and λ ≤ κ implies κ = λ

We’ll skip the proof of CSB, see cardinality for two proofs.

http://www.cs.cmu.edu/~cdm/pdf/20-cardinality.pdf


A Bijection 39

Constructing a bijection [0, 1]↔ (0, 1] directly. Try.



Countably Infinite 40

The naturals N are the most basic example of an infinite set.
Surprisingly, there are lots of other sets that appear to be larger but are
all equinumerous with N;

Z, N× N, Q, Σ?, finite trees, finite graphs, TMs, . . .

Definition

A set A countably infinite if there is a bijection N↔ A.

Exercise

Show that all the sets above are indeed countably infinite.



A Basic Bijection 41

A very useful tool is a pairing function, an injective map π : N× N→ N .

There are many possibilities, the following is my favorite choice:

π(x, y) = 2x(2y + 1)

For example

π(5, 27) = 32 · 55 = 1760 = 110111 000002

Using π and recursive extension to N? it is not hard to show that lots of
infinite sets are countable.



Terminology 42

It is standard to say

set A is countable

if A is either finite or countably infinite.

Thus, a countable set can be enumerated as

a0, a1, a2, . . . , an−1

or

a0, a1, a2, . . . , an−1, an, . . .

Countable sets are critical in ToC; in a sense, anything larger is
automatically off limits (at least in the classical theory).



Aleph Naught 43

OK, but if countable sets are so important, it would be nice to know
what their cardinal number is.

To first order approximation, we can define the first infinite cardinal
number to be

ℵ0 = {n | n ≥ 0 }

As written, this definition is rather circular, we basically assume the
naturals to define the naturals. This can be fixed, see Dedekind chains,
but we won’t go there.

http://www.cs.cmu.edu/~cdm/pdf/50-ordinals.pdf


Cardinality Zoo 44

So we now have the following infinite collection of cardinal numbers:

0, 1, 2, . . . , 42, . . . , 1010
10

, . . . ,ℵ0

Note that we can even do arithmetic on these numbers:

ℵ0 + n = ℵ0 + ℵ0 = ℵ0 · ℵ0 = ℵ0

Exercise

Figure out what the last comment means. Think about Z, Q and the like.



And Beyond? 45

Natural Question: Are there sets that are not countable?

As we will see, the answer is emphatically YES: it makes perfect sense to
talk about

ℵ1,ℵ2, . . . ,ℵ1010 , . . . ,ℵℵ0 , . . . ,ℵℵℵ0
, . . .

The sequence of cardinals is itself wildly infinite and leads straight into
the abyss (aka the math department).

Relax, though, all these higher cardinalities play hardly any role in the life
of computer scientist. The reason we talk about them is the proof
technique that is used to produce them: diagonalization.
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Big Sets 47

OK, so here is a definition that just might be vacuous:

Definition

A set is uncountable if it is neither finite nor countably infinite.

We need to show that some uncountable set exists.

And it would be nice to come up with a well-known set that turns out to
uncountable.



Cantor’s Theorems 48

Theorem (Cantor 1874/1891)

The set of real numbers, R, is not countable.

Theorem (Cantor 1891)

For any set A, the cardinality of P(A) is greater than the cardinality of A.



Say What? 49

Cantor’s first theorem shows that there are at least two levels of infinity,
and that they play a central role in calculus: the continuum has to be
larger than the naturals.

The second theorem is a bit harder to swallow: it shows that there are in
fact infinitely many levels of infinity:

|N| < |P(N)| < |P(P((N))| < |P(P(P(N)))| < . . .

Even this infinite chain is misleading: cardinals form the backbone of the
universe of sets, the collection of all cardinals is as large as the universe
itself.



Sequences 50

Standard notation for sequences over some set X:

finite List(X), X?, X<ω

infinite Xω, XN, N→ X



Cantor: Diagonalization 51

Warm-up: The number of binary sequences of length n is larger than n.

Yes, yes, we can do this quite directly by counting, but ordinary counting
does not work for infinite sets; we need a different approach.

We will prove something more constructive:

Given n binary sequences si, i < n, of length n, there is a binary
sequence d of length n that differs from all of them.



Diagonalization 52

Here goes: given the si, define d by

d(i) = 1− si(i)

for all i < n.

Then d differs from all the si in at least one bit, so d 6= si for all i < n.

Note that d is obtained by mucking with the diagonal sequence si(i).



Matrix View 53

We get d by flipping each bit along the diagonal of a matrix. Hence the
resulting sequence cannot be a row in the matrix.

s0(0) s0(1) s0(2) . . . s0(n− 1)

s1(0) s1(1) s1(2) . . . s1(n− 1)

s2(0) s2(1) s2(2) . . . s2(n− 1)
...

. . .
...

sn−1(0) sn−1(1) sn−1(2) . . . sn−1(n− 1)

In general, it does not matter how we change the element si(i) in d, it
just has to be different. With bits there is only one choice, of course.



The Key Insight 54

This also works for infinite sequences.

Simply replace i < n by i < ℵ0 and everything works just fine for infinite
sequences si ∈ 2N.

Claim

There are uncountably many binary sequences: 2N is uncountable.

Corollary

P(N) is uncountable.



The Real Thing 55

We want to show that R is uncountable. There are two main approaches:

Modify the diagonalization argument to work for R.

Find an injection 2N → R.

The second approach is more elegant, but we want to get some more
exercise in diagonalization, so let’s do the first.

Exercise

Take the second approach to show that R is uncountable.



Diagonalization for R 56

Let D = {0, 1, . . . , 9} be the decimal digits. Diagonalization easily shows
that DN is uncountable.

But there is a problem: we want to interpret x ∈ DN as a decimal
expansion

0 . x0x1x2 . . . xnxn+1 . . .

Thus, the numerical value of x is

val(x) =
∑
i≥0

xi10−i−1

Clearly 0 ≤ val(x) ≤ 1 and the map is surjective.

Alas: it is not injective because of trailing 9’s:

0.500000 . . . = 1/2 = 0.499999 . . .



Killing 9’s 57

Let’s agree to consider only sequences that have no trailing infinite block
of 9’s, so we are now looking at some set of sequences DN

0 ( DN.

The value map is now injective, and has range [0, 1).

Assume again that there is a sequence of digit sequences si, i ≥ 0, that
enumerates DN

0 . Then the diagonal sequence

d(i) =

{
3 if si(i) = 2,

2 otherwise.

is in DN
0 , but different from all the si. Contradiction.



Cantor II 58

The next task is to show that the cardinality of P(A) is strictly greater
than the cardinality of A, for any set A.

There is a trivial injection from A to P(A): a 7→ {a}.

So suppose there is a surjection f : A→ P(A) . Think of a as a “name”
for the set f(a) and define

B = { a ∈ A | a /∈ f(a) } ⊆ A.

Since f is surjective, B must have a name: B = f(b) for some b ∈ A.

But then b ∈ B implies b /∈ B, and conversely; contradiction.



Cantor vs. Russell 59

Note that Cantor’s construction is very similar to Russell’s paradox,
surprisingly Cantor never made the transition.

S = {x | x /∈ x }

B = { a ∈ A | a /∈ f(a) }

The existence of S is contradictory, but can be proved from Frege’s
axioms (though presumably not in Zermelo-Fraenkel set theory).

But there is nothing wrong with B, it just shows that f cannot be
surjective (and can be proved to exist in Zermelo-Fraenkel set theory).



More on Diagonalization 60

Diagonalization is a key technique in computability and complexity
theory.

Next lecture we will see a proof of the undecidability of the Halting
Problem, and it is based on exactly the same idea.

The only difference is that we will be dealing with computable maps,
rather that set-theoretic ones.

So Cantor inadvertently also provided a fundamental technique for
computability theory.



Definition: Cardinality 61

intuition

formal def (this is hard in the uncountable case, ignore)

examples

counterexpl

results
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