
GTI

Undecidability

A. Ada, K. Sutner

Carnegie Mellon University

Spring 2018

1 Cardinality

� Halting

� Undecidability

Total Recall 3

A set A is

finite bijection {0, 1, . . . , n− 1} ↔ A

countably infinite bijection N↔ A

uncountable otherwise

So uncountable means that there is no surjection N→ A, so we cannot
associate an element from a countable collection to each element in A.

Consequences 4

Almost all decision problems are undecidable.

Reason: the collection of TMs is countable, but P(Σ?) is
uncountable.

Almost all real numbers are non-computable.

Reason: the collection of TMs is countable, but R is uncountable.

Here a real r is said to be computable if for some TM M (which outputs
rational numbers):

∀n
(
|M(n)− r| < 2−n

)

All you favorite reals like π, e, ln 2 and so on are computable.

Cardinality Arguments 5

Cardinality arguments are very compact and elegant

. . . but they leave a bad aftertaste: they provide no concrete examples.

Here is another typical example: N? is countable.

The map f : N → N× N , f(n) = (a, b) when n = 2a3b,
(0, 0) otherwise, is surjective. Hence N2 is countable, by
induction Nk is countable. Thus N? is a countable union of
countable sets, and also countable.

Yes, some bijection must exist, but we really have no idea what it looks
like.

Leopold Kronecker, Semi-Constructivist 6

Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk.

“Dear god” made the integers,
everything else is the work of men.

Kronecker sabotaged Cantor every step
of the way.

Coding 7

We would like a coding function, a polyadic map of the form

〈 . 〉 : N∗ → N

that allows us to decode: from b = 〈 a0, a1, . . . , an−1 〉 we can recover n
as well as all the ai.

So the function must be injective.

Moreover, both the coding and decoding operations should be
computationally cheap.

Computable Coding 8

In practice, we need three functions: the actual coding function, an
decoding function and a length function:

〈 . 〉 : N? → N

dec : N× N→ N

len : N→ N

If b = 〈 a0, a1, a2, . . . , an−1 〉 then len(b) = n and dec(b, i) = ai.

Again: in the set-theoretic universe, the existence of these functions is
entirely trivial: N? is countable.

Pairs 9

The first step is to select a pairing function, an injective map
π : N× N→ N .

There are many possibilities, the following choice arguably yields one of
the most intuitive coding functions.

π(x, y) = 2x(2y + 1)

For example

π(5, 27) = 32 · 55 = 1760 = 110111 000002

In Binary 11

Note that the binary expansion of π(x, y) looks like so:

ykyk−1 . . . y0 1 00 . . . 0︸ ︷︷ ︸
x

where ykyk−1 . . . y0 is the standard binary expansion of y (yk is the most
significant digit). Hence the range of π is N+ (but not N).

This makes it easy to find the corresponding unpairing functions:

x = π1(π(x, y)) y = π2(π(x, y)).

Extending to Sequences 12

〈 nil 〉 := 0

〈 a0, . . . , an−1 〉 := π(a0, 〈 a1, . . . , an−1 〉)

Here are some sequence numbers for this particular coding function:

〈 10 〉 = 1024

〈 0, 0, 0 〉 = 7

〈 1, 2, 3, 4, 5 〉 = 532754

Informally . . . 13

Here is a sequence number and its binary expansion:

〈 2, 3, 5, 1 〉 = 20548

= 1 0︸︷︷︸
1

1 00000︸ ︷︷ ︸
5

1 000︸︷︷︸
3

1 00︸︷︷︸
2

So the number of 1’s (the digitsum) is just the length of the sequence,
and the spacing between the 1’s indicates the actual numerical values.

It follows that the coding function is injective and surjective, right?

It’s a Bijection 14

Lemma

〈 . 〉 : N∗ → N is a bijection.

Proof. Suppose

〈 a0, . . . , an−1 〉 = 〈 b0, . . . , bm−1 〉

We may safely assume 0 < n ≤ m (why?).

Since π is a pairing function, we get a0 = b0 and
〈 a1, . . . , an−1 〉 = 〈 b1, . . . , bm−1 〉 .

By induction, ai = bi for all i = 1, . . . , n− 1 and
0 = 〈 nil 〉 = 〈 bn, . . . , bm−1 〉 . Hence n = m and our map is injective.

Exercise

Prove that the function is surjective.

Exercises 15

Exercise

Construct a register machine that computes the length function len

Exercise

Construct a register machine that computes the decoding function dec

Exercise

Construct a register machine that uses coding to computer the prime
decomposition of a number.

That’s It! 16

We can now code any discrete structure as an integer by expressing it as
a nested list of natural numbers, and then applying the coding function.

For example, the so-called Petersen graph on the left is given by the edge
list, a nested list of integers, on the right.

((1, 3), (1, 4), (2, 4), (2, 5), (3, 5),

(6, 7), (7, 8), (8, 9), (9, 10), (6, 10),

(1, 6), (2, 7), (3, 8), (4, 9), (5, 10))

Coding Petersen 17

The code numbers of the edges are

34, 66, 258, 132, 260, 1028, 520, 4104, 16400,

65568, 16448, 131136, 65664, 262400, 1049088

Unfortunately, coding up this sequence produces a number with 485598
decimal digits.

Coding vs Data Structures 18

To be clear: coding is a conceptual tool.

For efficient computation one has to deal with the discrete structures
(words, lists, trees, graphs, hash tables, DFAs, TMs . . .) directly. That’s
the job of a programming language.

But as a matter of principle, it suffices to understand computable
arithmetic functions

f : Nk → N

Register machines are very good at this, Turing machines not so much.

Aside: Gödel’s Incompleteness Theorem 19

Gödel’s theorem (1931) is arguably the most important result in proof
theory: for any formal system Γ that captures just a bit of arithmetic,
there is a formula ϕ that is true, but not provable in Γ.

The details are very technical, but the proof uses two central ideas that
we are familiar with:

Coding: one can express logical formulae and proofs as numbers,
and one can manipulate these numbers just the way one can
manipulate formulae and proofs.

Diagonalization: using this coding schema, one can set up a formula
that says, in essence: “I am not provable.”

Exercises 20

Exercise

Give a proof that our coding function is surjective.

Exercise

Find unpairing functions for our pairing function, and for Cantor’s pairing
function.

Exercise

Come up with another pairing function and corresponding unpairing
functions.

Exercise

Show how to check if a number is a code number given dec and len.
What properties do you need?

� Cardinality

2 Halting

� Undecidability

Turing Machines are Discrete 22

Claim

A Turing machine is a finite, discrete structure.

But that means we can associate every TM M with a code number M̂ , a
so-called index for M .

So we obtain an enumeration M0, M1, M2, . . . of all TMs. If e is not an
index, let Me be some default machine.

It’s Effective 23

The point is that we can compute with an index instead of the actual
machine.

For example, there is an easily computable function

sc : N −→ N

so that sc(M̂) is the number of states of TM M . Similarly, there is a
simple function

comp : N× N −→ N

such that comp(M̂1, M̂2) is the index of the machine obtained by running
machine M2 after M1 (sequential composition).

An Interpreter 24

How about a function

eval : N× N −→ N

such that eval(M̂, x) = M(x)?

That’s a bit more complicated to figure out in detail, but not really all
that hard.

Note that eval is computable, otherwise there would be no CS
departments.

A Conundrum 25

Since eval is computable, so is the function

f(x) := eval(x, x) + 1

f may not make much sense as an arithmetic function, but it is perfectly
well-defined, and certainly computable. Needless to say, this is another
example of diagonalization.

But then there must be a TM that computes it, say, a machine with
index f̂ . Alas, now we’re in trouble:

eval(f̂ , f̂) = f(f̂) = eval(f̂ , f̂) + 1

☠
The Fix 26

The only way to solve this problem is to give up on total functions: we
must consider partial functions that can be undefined on some inputs.

When dealing with partial functions it is better to write things like

f(x) ' g(x)

with the intended interpretation:

Both sides are defined and equal, or

both sides are undefined.

So eval(f̂ , f̂) ' eval(f̂ , f̂) + 1 and everything is fine.

Halting 27

Dealing with general computable functions automatically leads to partial
functions, there is no way around this: otherwise we would have to give
up on eval.

There are important subclasses of computable functions that are all total,
but in the general case we are stuck with partial functions. So we
naturally run into the following decision problem:

Problem: Halting
Instance: An index e, an argument x.
Question: Does Me halt on input x?

� Cardinality

� Halting

3 Undecidability

Decidability 29

It would be nice to be able to check whether M(x) converges before
actually running the computation. Alas

Theorem

The Halting Problem is undecidable.

Proof.

Suppose that there is a Turing machine halt(e,x) that solves the HP.

Then we can cobble together the following machine:

In Pseudo-Code 30

// evil TM

// input: e

if(halt(e,e))

return eval(e,e) + 42;

else

return 0;

Here halt(e,x) is the halting tester that exists by assumption, and
eval(e,x) is our interpreter: it runs Me on input x.

But . . . 31

ETM has some index ê.

ETM halts on all inputs, including ê.

On input ê, ETM returns eval(ê, ê) + 42, but it is supposed to return
eval(ê, ê).

Thus ETM is contradictory, and our initial assumption about halt(e,x)
is wrong.

Stronger Result 32

Our proof actually shows that the following version of Halting is already
undecidable.

Problem: Halting′

Instance: An index e.
Question: Does Me halt on input e?

Note that Halting is at least as difficult as Halting′: any algorithm for
Halting automatically also solves Halting′.

A Reduction 33

Perhaps surprisingly, we can also show that Halting′ is at least as difficult
as Halting:

Given e and x, an instance of Halting.

Construct a TM M ′ with index e′ that, on input z, runs
Me on x (thus M ′ ignores its input).

Then (e, x) is a Yes-instance of Halting iff e′ is a Yes-
instance of Halting′.

Clearly, e′ is computable from e and x.

So if we know that Halting′ is undecidable, it follows that Halting is also
undecidable.

Nothing New 34

Every CS person is familiar with this approach: we want to solve problem
A, and we already have a powerful algorithm in a library that solves
problem B.

Rather than trying to find an algorithm for A directly, we translate an
instance of problem A into an equivalent instance of problem B, and
then use the given algorithm.

For example, removing duplicates from a list easily reduces to sorting.

Too Self-Absorbed? 35

Some might object that Halting is a bit too much concerned about
computability to count as a compelling example of a natural undecidable
problem.

Fine, but there are lots of other decision problems that, on the face of it,
have nothing to do with computation, but are similarly undecidable.

A good test is the following: the problem should have been invented by
someone who is not a recursion theorist (computability expert).

Hilbert’s 10th Problem 36

Perhaps the most famous example of an undecidability result in
mathematics is Hilbert’s 10th problem, the insolubility of Diophantine
equations, announced by Hilbert in 1900.

A Diophantine equation is a polynomial equation with integer
coefficients:

P (x1, x2, . . . , xn) = 0

The problem is to determine whether such an equation has an integral
solution.

Theorem (Y. Matiyasevic, 1970)

It is undecidable whether a Diophantine equation has a solution in the
integers.

Different Numbers 37

Note that the choice of Z as ground ring is important here. We can ask
the same question for polynomial equations over other rings R (always
assuming that the coefficients have simple descriptions).

Z: undecidable

Q: major open problem

R: decidable

C: decidable

Decidability of Diophantine equations over the reals is a famous result by
A. Tarski from 1951, later improved by P. Cohen.

Wang Tiles 38

Here is a more geometric problem: we are given a collection of tiles, unit
squares that are colored as follows:

There is an infinite supply of each type of tile, rotations and reflections
are not allowed.

The goal is to cover the whole plane with these tiles, in a way that all
adjacent colors match.

Aperiodic Tiling 43

Theorem (R. Berger 1966)

The Tiling Problem is undecidable.

This result is based on a surprising and somewhat counterintuitive fact:
there are sets of Wang tiles that admit a tiling of the whole plane, but
not a periodic one (Hao Wang originally conjectured in 1961 that such
tiles to not exist).

Aperiodic Wang Tiles 44

Interestingly, small sets of Wang tiles can be constructed using finite
state machines and old-fashioned hyperbolic geometry.

So What Is It? 45

We have a negative characterization for Halting: it’s undecidable.

But how about a positive characterization?

Definition

A set A is semidecidable if there is a Turing machine M that, on input x,
halts if x ∈ A, and diverges otherwise.

You can think of this machine as a broken decider: it only works properly
on Yes-instances, but fails completely on all No-instances.

Note: Halting is semidecidable, as are the Diophantine equation and
Tiling problems.

Decidable vs. Semidecidable 46

In many ways, semidecidable sets are more fundamental than decidable
ones.

Lemma

A set is decidable iff the set and its complement are both semidecidable.

Proof.

Left to right is trivial.

Right to left: Beware the perils of sequential computation.

2

Closure 47

Lemma

Semidecidable sets are closed under union and intersection.

Proof.

Argue about running the corresponding TMs (in parallel for union).

2

Dire Warning: But they are not closed under complement: otherwise
the Halting set would be decidable.

Hilbert’s 10th: The Proof 48

The full proof is too complicated to be presented here, but the main idea
is a reduction:

Show that decidability of Hilbert’s 10th problem implies
decidability of the Halting problem.

More precisely, call a set A ⊆ Z Diophantine if there is a polynomial P
with coefficients over Z such that

a ∈ A ⇐⇒ ∃x1, . . . , xn ∈ Z
(
P (a, x1, . . . , xn) = 0

)
.

This condition is rather unwieldy, it is usually fairly difficult to show that
a particular set is in fact Diophantine.

Diophantine Sets 49

Even numbers: a = 2x.

Non-zero: ax = (2y − 1)(3z − 1).

Naturals (Lagrange): a = x21 + x22 + x23 + x24.

Closure under intersection (sum of squares) and union (product).

Again: Semidecidability 50

It turns out that exactly the semidecidable sets are Diophantine. In
particular, the Halting Set is Diophantine, and so it must be undecidable
whether an integer polynomial has an integral solution.

It is clear that every Diophantine set is semidecidable: given a, we can
simply enumerate all possible x ∈ Zn in a systematic way, and compute
P (a,x).

If we ever hit 0, we stop; otherwise we run forever.

Surprisingly the opposite direction also holds, but this is much, much
harder to show.

Details 51

First M. Davis was able to show that every semidecidable set A has a
Davis normal form: there is a polynomial such that

a ∈ A ⇐⇒ ∃ z ∀ y < z ∃x1, . . . , xn
(
P (a, x1, . . . , xn, y, z) = 0

)
.

Davis, Putnam and Robinson then managed to remove the offending
bounded universal quantifier at the cost of changing P to an exponential
polynomial (containing terms xy).

Lastly, Matiyasevic showed how to convert the exponential polynomial
into an ordinary one.

Theorems 52

One of the reasons semidecidability is so important is that, given a formal
axiomatic system Γ, the set of theorems provable in Γ is always
semidecidable: essentially, a TM can just search over all possible proofs
in the system.

In some cases, the set of theorems is actually decidable, but the decision
algorithm can be quite complicated.

Example

Theory of Abelian groups: decidable.

Theory of groups: undecidable.

So computability provides a tool to classify arbitrary mathematical
domains, even those that seem to have nothing to do with computation.

Definition: Semi-/Decidability 53

intuition

formal def

examples

counterexpl

results

