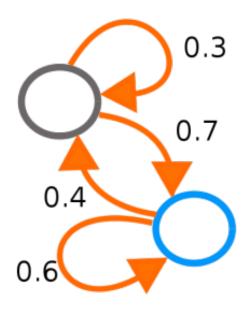
I 5-252 More Great Ideas in Theoretical Computer Science Markov Chains

April 27th, 2018



Markov Chain

Andrey Markov (1856 - 1922)

Russian mathematician.

Famous for his work on random processes.

($\Pr[X \ge c \cdot \mathbf{E}[X]] \le 1/c$ is Markov's Inequality.)

A model for the evolution of a random system.

The future is independent of the past, given the present.

Cool things about Markov Chains

- It is a very general and natural model.
 - Applications in:
 - computer science, mathematics, biology, physics, chemistry, economics, psychology, music, baseball,...

- The model is simple and neat.

- Cilantro

The plan

Motivating examples and applications

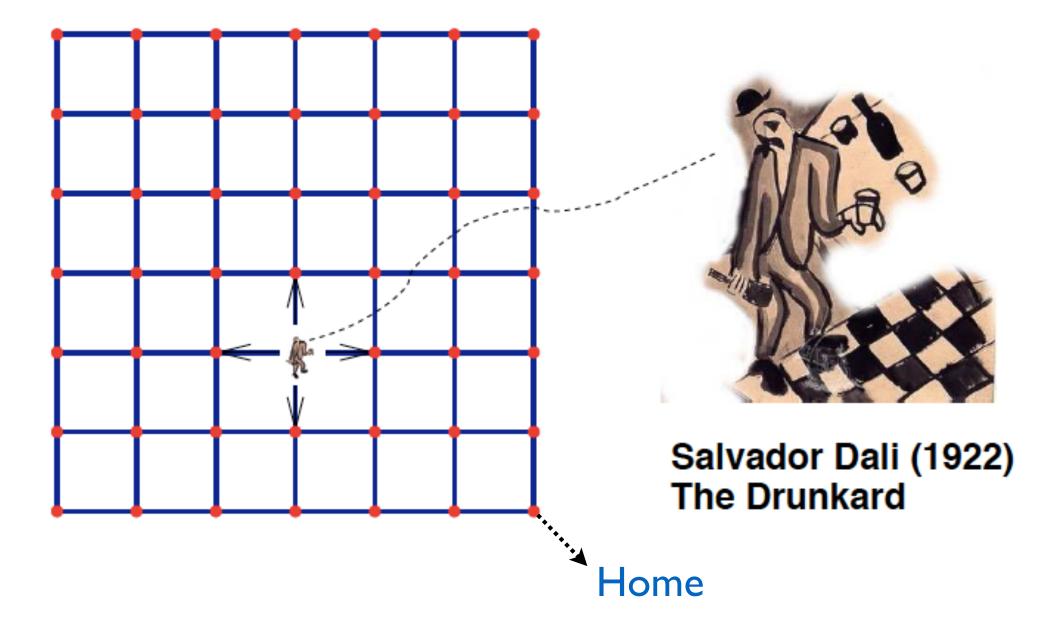
Basic mathematical representation and properties

A bit more on applications

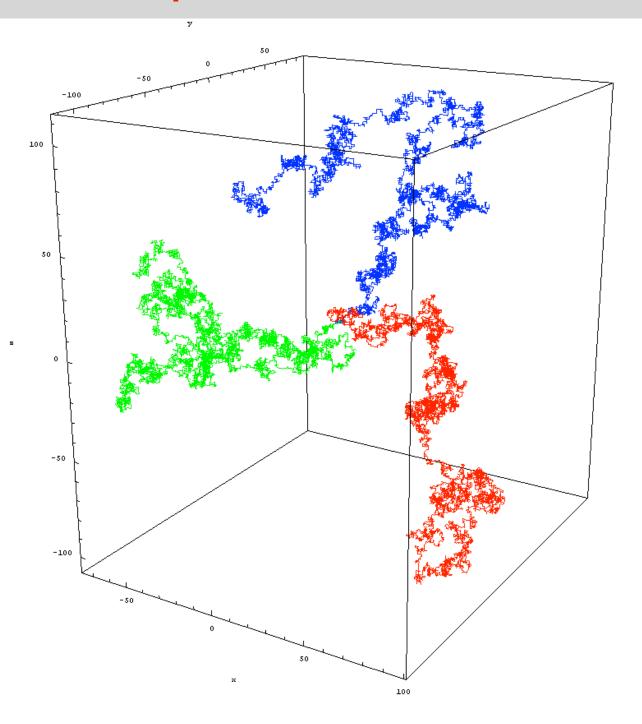
The future is independent of the past, given the present.

Some Examples of Markov Chains

Example: Drunkard Walk



Example: Diffusion Process



Example: Weather

A very(!!) simplified model for the weather. S = sunnyProbabilities on a daily basis: $\mathbf{R} = \mathbf{rainy}$ Pr[sunny to rainy] = 0.1S R Pr[sunny to sunny] = 0.9**S** $\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}$ Pr[rainy to rainy] = 0.5Pr[rainy to sunny] = 0.5 0.5 0.1 Rainy Sunny 0.5 Encode more information about current state for a more accurate model.

Example: Life Insurance

Goal of life insurance company:

figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:

Pr[healthy to sick] = 0.3 Pr[sick to healthy] = 0.8 Pr[sick to death] = 0.1 Pr[healthy to death] = 0.01 Pr[healthy to healthy] = 0.69 Pr[sick to sick] = 0.1 Pr[death to death] = 1

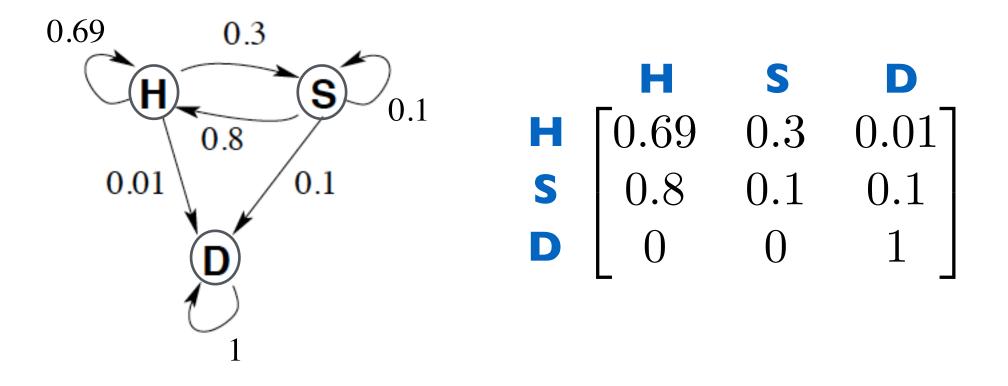
Example: Life Insurance

Goal of life insurance company:

figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:



Some Applications of Markov Models

Application: Algorithmic Music Composition

Nicholas Vasallo

Megalithic Copier #2: Markov Chains (2011)

written in Pure Data

Application: Image Segmentation



Application: Automatic Text Generation

Random text generated by a computer (putting random words together):

"While at a conference a few weeks back, I spent an interesting evening with a grain of salt."

<u>Google</u>: Mark V Shaney

Application: Speech Recognition

Speech recognition software programs use Markov models to listen to the sound of your voice and convert it into text.

1997: Web search was horrible

Sorts webpages by number of occurrences of keyword(s).

Larry Page Sergey Brin

\$40Billionaires

Jon Kleinberg

Nevanlinna Prize

How does Google order the webpages displayed after a search?

<u>2 important factors:</u>

- Relevance of the page.
- Reputation of the page.
 The number and reputation of links pointing to that page.

Reputation is measured using PageRank.

PageRank is calculated using a Markov Chain.

The plan

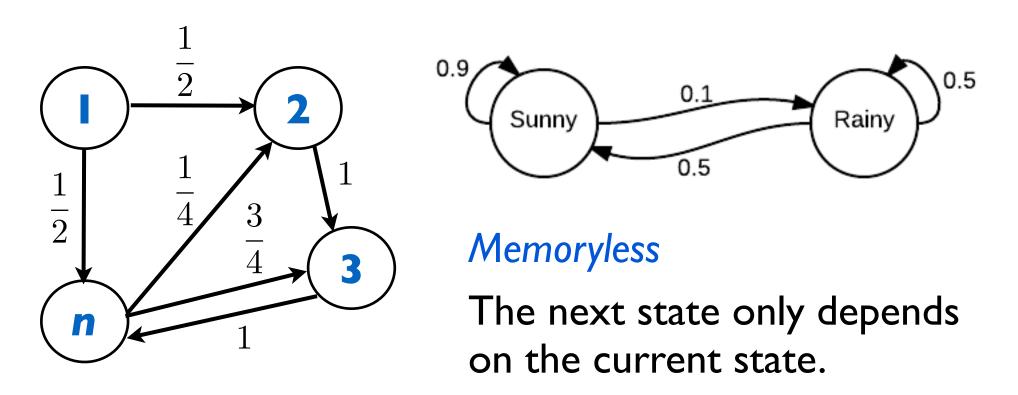
Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications

The Setting

There is a system with n possible states/values {1, 2, ..., n}. At each time step, the state changes probabilistically.



Evolution of the system: random walk on the graph.

The Definition

A Markov Chain is a digraph with $V = \{1, 2, ..., n\}$ such that:

- Each edge is labeled with a value in $\left(0,1\right]$ (a probability). self-loops allowed
- At each vertex, the probabilities on outgoing edges sum to $1. \end{tabular}$

(We usually assume the graph is strongly connected.

i.e. there is a directed path from *i* to *j* for any *i* and *j*.)

The vertices of the graph are called states.

The edges are called transitions.

The label of an edge is a transition probability.

Notation

Given some Markov Chain with n states:

Define

$$\pi_t[i] = \text{probability of being in}$$

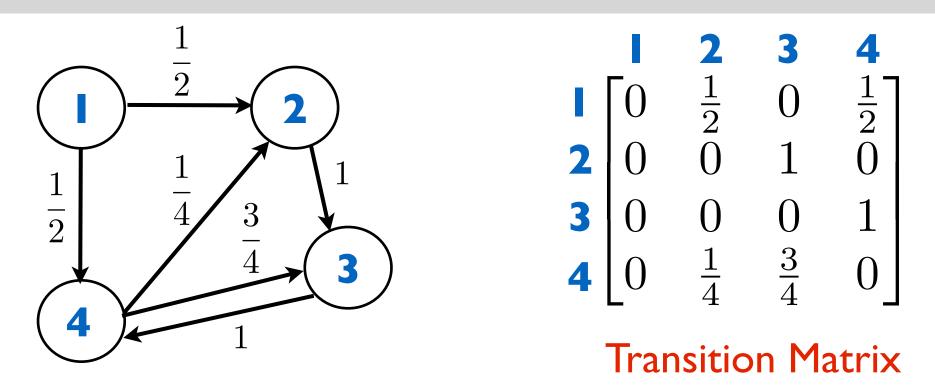
state *i* after exactly **t** steps.

$$\pi_t = [p_1 \ p_2 \ \cdots \ p_n] \qquad \sum_i p_i = 1$$

Note that someone has to provide π_0 .

Once this is known, we get the distributions π_1, π_2, \ldots

Notation



A Markov Chain with **n** states can be characterized by the **n** x **n transition matrix** K

 $\forall i, j \in \{1, 2, \dots, n\} \quad K[i, j] = \Pr[i \to j \text{ in one step}]$

<u>Note</u>: rows of K sum to I.

Some Fundamental and Natural Questions

What is the probability of being in state *i* after *t* steps (given some initial state)?

 $\pi_t[i] = ?$

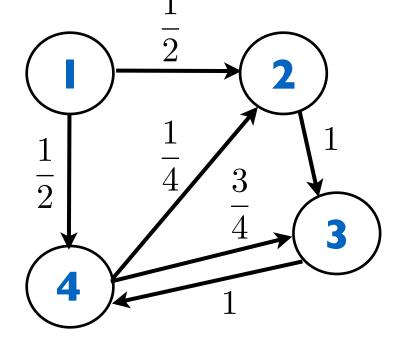
What is the expected time of reaching state **i** when starting at state **j** ?

What is the expected time of having visited every state (given some initial state)?

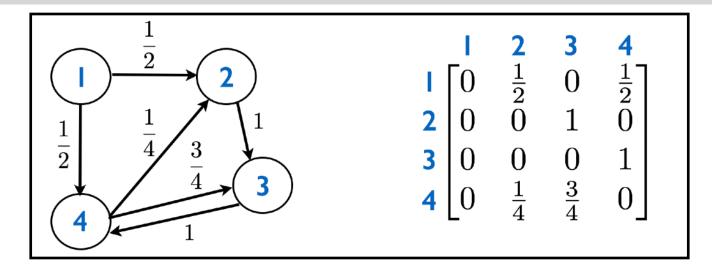
How do you answer such questions?

Suppose we start at state I and let the system evolve.

How can we mathematically represent the evolution?

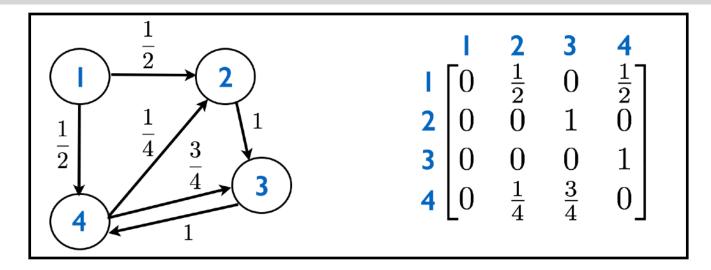


$$\begin{bmatrix}
2 & 3 & 4\\
0 & \frac{1}{2} & 0 & \frac{1}{2}\\
0 & 0 & 1 & 0\\
3 & 0 & 0 & 0 & 1\\
0 & \frac{1}{4} & \frac{3}{4} & 0
\end{bmatrix}$$



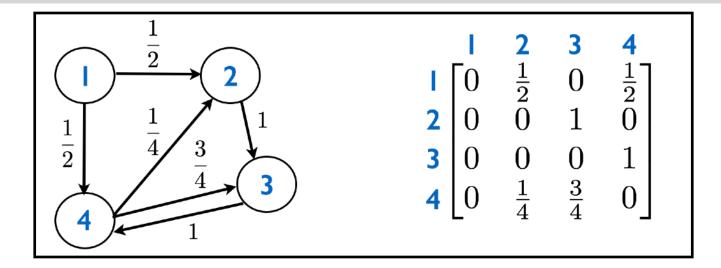
The probability of states after 1 step:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
$$\begin{array}{c} \pi_{1} \\ \pi_{1} \\ \text{the new state} \\ \text{(probabilistic)} \end{array}$$



The probability of states after 2 steps:

$$\begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{8} & \frac{7}{8} & 0 \end{bmatrix}$$
$$\begin{array}{c} \pi_{2} \\ \pi_{2} \\ \text{the new state} \\ \text{(probabilistic)} \end{array}$$



$$\pi_1 = \pi_0 \cdot K$$
$$\pi_2 = \pi_1 \cdot K$$
So
$$\pi_2 = (\pi_0 \cdot K) \cdot$$

 $= \pi_0 \cdot K^2$

K

In general:

If the initial probabilistic state is $\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} = \pi_0$

$$p_i = probability$$
 of being in state *i*,

 $p_1 + p_2 + \cdots + p_n = 1$,

after t steps, the probabilistic state is:

$$\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} \begin{bmatrix} \text{Transition} \\ \text{Matrix} \end{bmatrix}^t = \pi_t$$

What happens in the long run?

i.e., can we say anything about π_t for large t ?

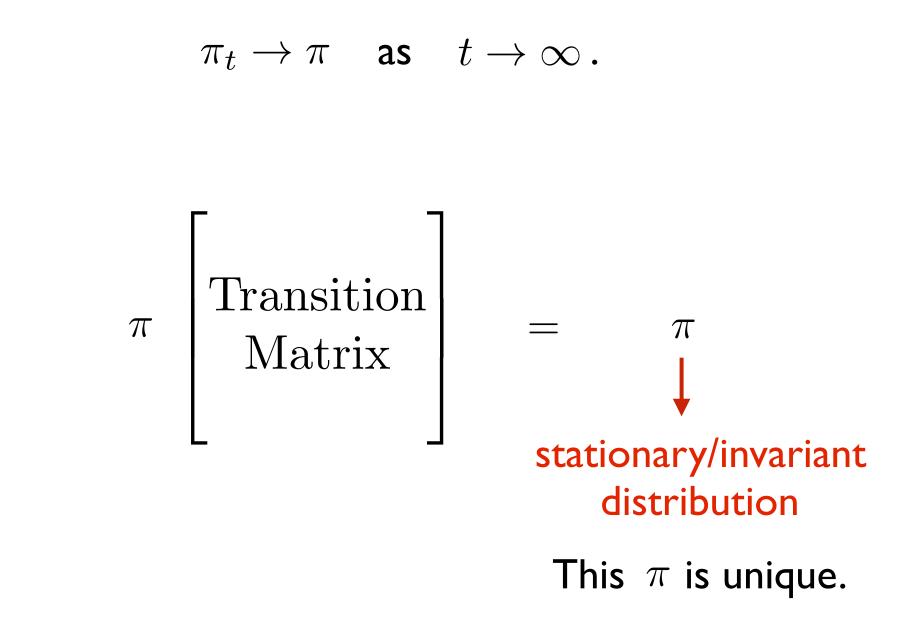
Suppose the Markov chain is "aperiodic".

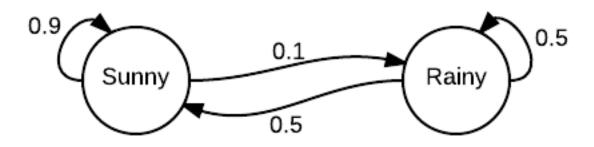
Then, as the system evolves, the probabilistic state **converges** to a limiting probabilistic state.

As
$$t \to \infty$$
, for any $\pi_0 = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$:
 $\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ $\begin{bmatrix} Transition \\ Matrix \end{bmatrix}$ $\xrightarrow{t} \pi$

In other words:

Note:





Stationary distribution is $\begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix}$.

$$\begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

In the long run, it is Sunny **5/6** of the time, it is Rainy **1/6** of the time.

How did I find the stationary distribution?

$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^2 = \begin{bmatrix} 0.86 & 0.14 \\ 0.7 & 0.3 \end{bmatrix}$$
$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^4 = \begin{bmatrix} 0.8376 & 0.1624 \\ 0.812 & 0.188 \end{bmatrix}$$
$$\begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix}^8 = \begin{bmatrix} 0.833443 & 0.166557 \\ 0.832787 & 0.167213 \end{bmatrix}$$

Exercise: Why do the rows converge to π ?

Things to remember

Markov Chains can be characterized by the transition matrix K.

$$K[i,j] = \Pr[i \to j \text{ in one step}]$$

What is the probability of being in state *i* after *t* steps?

$$\pi_t = \pi_0 \cdot K^t \qquad \qquad \pi_t[i] = (\pi_0 \cdot K^t)[i]$$

Things to remember

Theorem (Fundamental Theorem of Markov Chains):

- Consider a Markov chain that is strongly connected and aperiodic.
- There is a unique invariant/stationary distriution $\,\pi\,$ such that

$$\pi = \pi K.$$

- For any initial distribution $\,\pi_{0}$,

$$\lim_{t \to \infty} \pi_0 K^t = \pi$$

- Let T_{ij} be the number of steps it takes to reach state j provided we start at state i. Then,

$$\mathbf{E}[T_{ii}] = \frac{1}{\pi[i]}.$$

The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications

How are Markov Chains applied ?

2 common types of applications:

 Build a Markov chain as a statistical model of a real-world process.

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

- 2. Use a measure associated with a Markov chain to approximate a quantity of interest.
 - e.g. Google PageRank, image segmentation

Generate a superficially real-looking text given a sample document.

Idea:

From the sample document, create a Markov chain. Use a random walk on the Markov chain to generate text.

Example:

Collect speeches of Obama, create a Markov chain. Use a random walk to generate new speeches.

The Markov Chain:

- I. For each word in the document, create a node/state.
- 2. Put an edge word | ---> word2 if there is a sentence in which word2 comes after word |.
- **3**. Edge probabilities reflect frequency of the pair of words.

"I jumped up. I don't know what's going on so I am coming down with a road to opportunity. I believe we can agree on or do about the major challenges facing our country."

Another use:

Build a Markov chain based on speeches of Obama. Build a Markov chain based on speeches of Bush.

Given a new quote, can predict if it is by Obama or Bush.

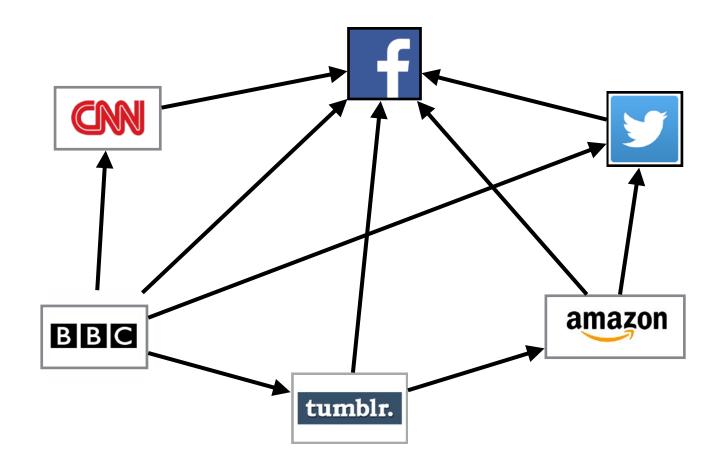
(by testing which Markov model the quote fits best)

Google PageRank

PageRank is a measure of reputation:

The number and reputation of links pointing to you.

The Markov Chain:



Google PageRank

PageRank is a measure of reputation: The number and reputation of links pointing to you.

The Markov Chain:

- I. Every webpage is a node/state.
- 2. Each hyperlink is an edge:
 if webpage A has a link to webpage B, A ---> B
- **3a**. If A has *m* outgoing edges, each gets label 1/*m*.

3b. If **A** has no outgoing edges, put edge **A** ---> **B** \forall **B** (jump to a random page)

Google PageRank

<u>A little tweak:</u>

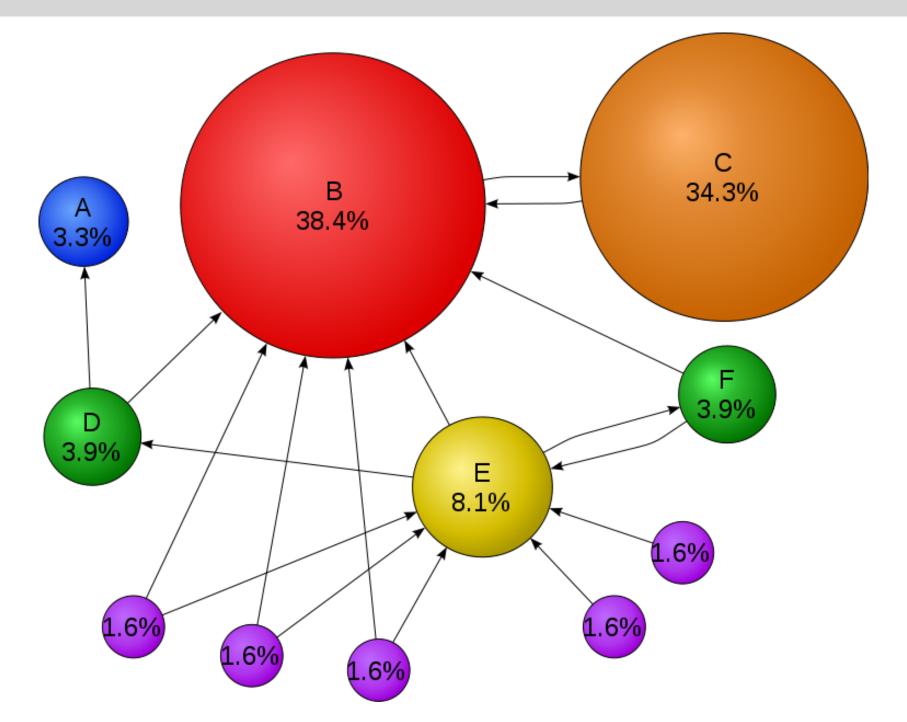
Random surfer jumps to a random page with 15% prob.

Stationary distribution:

probability of being at webpage A in the long run

PageRank of webpage A = The stationary probability of A

Google PageRank



Google PageRank

"PageRank continues to be the heart of our software."

The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications