
Flipping Pebbles

Klaus Sutner

Carnegie Mellon University



1 A Pebble Game

� The ToC Angle



Flipping Pebbles 3

⇓

Given a row of tokens, white on one side, blue on the other. Flip
the first token. If it was white, skip the next two tokens; otherwise,
skip just one token. Keep flipping till you fall off the end.





Getting Serious 5

0

21

0/1

1/0

a/a

a/a

Our pebble-flipping operation is really a word map defined by a 3-state
automaton A.



The Word Maps 6

We can choose an initial state arbitrarily and write 0, 1 and 2 for the
corresponding maps 2? → 2?. The pebble flipping operation corresponds
to 0 (map i copies i bits, then runs 0).

We can write the maps in terms of simultaneous recursion on words,
a ∈ 2, x ∈ 2?:

0(0x) = 1 2(x)

0(1x) = 0 1(x)

1(ax) = a 0(x)

2(ax) = a 1(x)



Invertible Mealy Machines 7

There are only two types of states: copy and toggle.

p

q0

q1

p

q0

q1

0/0

1/1

0/1

1/0

As a consequence, there is no loss of information when applying the maps
k, they are all length-preserving bijections on 2?.



Recall: DFAs 8

These machines are very similar to DFAs, but slightly different.

There is no initial state (computation can start at any state).

There are no final states (computation just goes on and on).

The edge labels are not in 2 but in 2× 2 (it’s a transducer, not an
acceptor).



Sequential Maps 9

Our maps are special in the sense that there is no look-ahead:

f(uv) = f(u) g(v)

where f, g ∈ {0, 1, 2}.

Key Idea:

Think of such maps as automorphisms of the infinite binary tree.



Tree Automorphisms 10

We are interested in any permutation that preserves the tree structure
(root to root, children to children).



As Word-Maps 11

ϵ

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Suppose we want to interchange the two orange nodes and their subtrees
(everything else stays). Sequential map

f(0x) = 0x

f(1 a x) = 1 a x



Getting Really Serious 12

The collection of all automorphisms of 2? forms a huge uncountable
group

Aut(2?)

Group theorists are very interested in particular subgroups G ⊆ Aut(2?).

This is idea is about 40 years old.



Jean-Pierre Serre 13

Fields Medal, Abel Prize,
Steele Prize, Wolf Prize

Member Bourbaki

Arbres, Amalgames, SL2

(1977)



A New Idea: Automata 14

In general, the subgroups G ⊆ Aut(2?) are hopelessly complicated.

But how about the subgroups that can be defined in terms of a finite
state machine?

We take the group generated by the all the maps p where p ranges over
the state set:

G = {0, 1, 2, 0−1, 02, 0 1, 0−12, . . .}



Milnor’s Question 15

Suppose your group has generators Σ = {g1, . . . , gk}.

Words over Σ correspond to group elements.

Get a growth function

γ(n) = # group elm. obtained from Σn

It is easy to find examples where γ is

polynomial

exponential

Is there anything in between?



Grigorchuk Group 16

0/0
1/1

a/a

0/0 1/1

0/0

1/1

a/a



� A Pebble Game

2 The ToC Angle



Orbits 18

Applying a map p over and over to a given word, we get a cycle, the orbit
of the word.



Length 5, 0 19

00000

1001000001

10011 00010

1000000011

10001

0010010110

00101 10111

0011010100

00111 10101

01000

1101001001

11011 01010

1100001011

11001

0110011110

01101 11111

0111011100

01111 11101



Length 5, 0, 1 20



Obvious Questions 21

How long are these orbits?

How many orbits are there of a given length?

Of course, we want the answer for all of 2k in terms of k.

For our pebble game, the answer is pretty nice.



Computational Attack 22

1 2 4 8 16 32
0 1
1 1
2 2
3 2
4 4
5 4
6 8
7 8
8 16
9 16

10 32

→: orbit length, ↓: word length, missing entries are 0



Counting Orbits 23

Conjecture

For words of length k, there are 2bk/2c orbits.

The length of each orbit is 2dk/2e.

Of course, an actual proof requires some kind of idea as to why this
should be true.

Exercise

Show that every orbit must have length 2` for some `.



Orbit Problem 24

Suppose we have two words x and y of length k.

How hard is it to test if x and y lie on the same orbit?

Suppose x and y lie on the same orbit.

How hard is to compute a timestamp t such that 0t(x) = y?



Digression: An Easy Case 25

0 1 2

1/0

a/a
0/1

a/a

For this automaton, one can give a simple description of all the maps p.

As a consequence, the orbit problem is almost trivial.



Non-Piazza Poll 26

Suppose you have x, y ∈ 21,000,000.

How long does it take to check whether y is in the orbit of x under our
pebble flipping map 0?

one second

one minute

one hour

one year

longer than the lifespan of the universe

requires a quantum computer with 1,000,000 qbits

it’s clearly undecidable



Some Surprising Facts 27

To simplify matters slightly, let us ignore the inverse maps p−1 for the
time being.

Techically, let S be the semigroup generated by our three basic maps 0, 1
and 2. Thus S consists of all compositions that generically look like

f = 0 0 2 1 0 1 1 2

A priori, it is completely unclear what maps like f look like, or how they
interact.



Recall: Product Automata 28

We saw a theorem in class that says that whenever f and g are rational,
so is their composition f ◦ g.

Moreover, a transducer for f ◦ g can be constructed from the machines
for f and g (product construction).



f = 08
29

Here is the product automaton for f = 08:

1 2 3 4

5

6

7
8

gray: a/a, green 0/1, blue 1/0



f = 021 22
30



Computability 31

So S is a computable structure: there are finite data structures to
represent the elements of S, and we can manipulated them
algorithmically to deal with composition.

0, 1, 2

f ◦ g

1

3

2 1

3

2 1

3

2

A⊗ B

That’s nice, but we want to understand its structure. Just because we
have an algorithm does not mean we understand what is going on.



Richard Hamming 32

The purpose of computation is insight, not numbers.



Commutativity 33

Lemma

S is commutative.

There are two proofs for this:

induction on the length of an input word, or

building the corresponding product automata and checking for
isomorphism.

The second approach has one huge advantage: it is easily automated.



Simplify 34

So every map in S can be written as

f = 0a 1b 2c

where a, b, c ∈ N.

Even more concisely, we can write each of these maps as (a, b, c) ∈ N3.



It’s a Group 35

But how about the inverses that are apparently missing from S?

We don’t need to add them, they pop up automatically.

This can be seen from the unexpected identity

02 12 2 = I

So for example 2−1 = 02 12.



Digression: Markov Chain 36

We can think of the transition matrix of A as a stochastic matrix:

0

21

0/1

1/0

a/a

a/a

B =

 0 1 0
1/2 0 1
1/2 0 0



This matrix B has eigenvalue 1 with eigenvector (2, 2, 1) as in 02 12 21.



Pinning Down S 37

So S is a commutative group, and there are only two generators: we can
express 2 in terms of 0 and 1.

One might suspect that

S ∼= Z2

but to show this we need to make sure there are no other identities lying
around.



Knuth to the Rescue 38

We need to rule out things like 042117 = I.

But how? We can’t just try out all possible identities.

Knuth came up with the following brilliant idea:

Let’s make the transducer infinite.



Knuth’s Infinite Machine 39

0

21

0/1

1/0

a/a

a/a

3 4 5
a/a a/a a/a a/a

As it turns out, adding copy states 3, 4 . . . does not change S: we get no
new permutations.



Why Bother? 40

Because now we have more identities:

k2 k + 12 k + 2 = I

These hold for all k ≥ 0.



More Identities 41

k2 = k + 2 k + 3

This follows directly from the last slide.



Knuth Normal Form 42

The new identities give us a rewrite system for any function in S.

Theorem: Every element f of S has a unique flat normal form

f = k1 k2 . . . kn

where k1 < k2 < . . . < kn.



KNF for 020120
43

0 1 2 3 4 5 6 7 8 9
20 20
-20 -20 -10

10 10 5
-10 -10 -5

6 6 3
-2 -2 -1

2 2 1
0 0 0 0 1 1 1 0 1 1

KNF(020120) = 4 5 6 8 9



Free Abelian 44

It follows from KNF that we already have all identities in S.

Hence we have

S = { 0a 1b | a, b ∈ Z } ∼= Z2

And, there is a fractal.



KNF for 0k 45

KNF of 0k, 0 ≤ k < 64

column height: number of terms

colors: represent numerical value







And Equivalence Testing? 48

The description of S as Z2 makes it much easier to understand its
structure: with a bit of effort, everything can be expressed in terms of
linear algebra.

There is no need to deal with complicated machines like

Even better: we have lots of algorithms at our disposal. In particular one
can check whether x and y are on the same orbit in polynomial time.



The Whopper 49

Theorem

There is a finite state machine that can check if x and y lie on the same
orbit under 0.

Truth in advertising: I spent a lot of time trying to disprove this.



The Orbit Checker 50

0011 01 10

0011

00
11

00
110011

01

10

00
11

01

10

00

11

0110

00
11

01

10

01

10

0011

00
11

00

11
01 10

0011

01

10

0011

01

10

00
11

01

10

01

10

01

10

01

10

00
11

0011

01

10

0011

01

10

0011

01

10

01

10
01

10

00
11

01

10

001101

10

01

10

01

10

00
11

0110

00

11

01

10

0011

0011

0011

initial state

This machine is minimal and has 34 states. Don’t ask why.



And Timestamps? 51

With a little more effort one can show that timestamps can also be
computed by a finite state machine:

There is a transducer that takes x:y as input, and returns the least
timestamp t as output, if it exists (otherwise the machine returns no
output).

Similarly there is a transducer that takes as input x and returns as output
the lexicographically least element of the orbit of x.



The Message 52

Combining classic machinery from math with computation produces lots
of interesting results.

It is hard to imagine that these results could be obtained solely with
traditional methods.

Computation provides a new lense on reality.



Computational Discrete Math 53

Classical topics in math and theory are often quite inaccessible, it may
take years to get to the point where new contributions are possible.

By throwing computation into the mix, the landscape shifts.

Kevin Lewi Stanford CS

Tsutomo Okano UIUC math

Tim Becker Chicago math


	A Pebble Game
	The ToC Angle

