
SAMS
Programming A/B

Lecture #1 – Introductions
July 3, 2017

Mark Stehlik

7/3/2017 SAMS - Lecture 1 2

Outline for Today

• Overview of Course

• A Python intro to be continued in lab on
Wednesday (group A) and Thursday (group B)

7/3/2017 SAMS - Lecture 1 3

The Course Staff

• Me
– Mark Stehlik <mjs@cs.cmu.edu>

• Teaching Professor
• available 11:30 – noon and 5:00 – 5:30 (GHC 6205)

• "The other guy"
– Anil Ada <aada@cs.cmu.edu>, teaching group C

• TAs
– 6 undergrads, available 6:30-9:00 and on weekends

7/3/2017 SAMS - Lecture 1 4

Course Logistics
• Course website:

– http://www.cs.cmu.edu/~aada/courses/SAMS17/

• Lectures
– Come on time; use of electronic devices is prohibited

during lecture (you’re here to learn to program, not surf the
web or talk to your friends – do that on your time)

• Handin
– via autolab (more on this later)

7/3/2017 SAMS - Lecture 1 5

You

• Students who want to learn about programming
and computer science

• No experience necessary (we will instrument
that), not probably intending to major in CS
(but…)

7/3/2017 SAMS - Lecture 1 6

Course content
An Introduction to Computing (two parts):

- understanding algorithms
- implementing algorithms (writing programs); requires learning
about, and practicing with, “the tools”:

functions
expressions
conditionals
loops
strings
lists
graphics

7/3/2017 SAMS - Lecture 1 7

Course elements

• Homeworks due Saturday 5:00pm (this week
there will be a short assignment due Thursday to
make sure you can use the labs)

• Weekly quizzes on Friday

7/3/2017 SAMS - Lecture 1 8

Collaboration Policy
There are no group assignments in this class
Everyone should read and abide by:

http://www.cmu.edu/policies/documents/AcademicIntegrity.htm
Here is some additional information for this course:

– You are allowed to talk with/work with other students on
homework assignments
• You can share ideas
• You can discuss things at a high (algorithmic, non-code) level (pictures)
• You should not share (or even look at) code!

– You must turn in your own work
• Your solution should be different than others
• The harder the assignment, the more differences we should see
• You should NEVER copy another student’’s file as a basis for your

solution. You should not let your files be copied by others!
– If you need help debugging, who do you ask?

7/3/2017 SAMS - Lecture 1 9

Programming vs. Computer Science

What is Python?

• Python is a programming language
– What's a programming language?

• A language that has a set of instructions/statements that,
when assembled correctly (syntactically and semantically)
can be compiled/interpreted by a computer and run
(executed) to perform a task

– So, it's a language, like English, Spanish, etc. with
rules for syntax (creating grammatically correct
statements) that have meaning (semantics)

• More on this as we go…

7/3/2017 SAMS - Lecture 1 10

Arithmetic Expressions

• Mathematical Operators
+ Addition
- Subtraction // Integer division
* Multiplication ** Exponentiation
/ Division % Modulo (remainder)

• Python is like a calculator: type an expression and it
tells you the value.

7/3/2017 SAMS - Lecture 1 11

>>> 2 + 3 * 5
17

Order of Evaluation

• Use parentheses to force alternate precedence
7+ 5 * 6 ≠ (7 + 5) * 6

• Operators that have the same precedence are applied left to right except for exponentiation.
Exponentiation is applied right to left.

5 * 10 % 4 = (5 * 10) % 4

2 + 3 + 4 = (2 + 3) + 4

2 ** 3 ** 4 = 2 **(3 ** 4)

7/3/2017 SAMS - Lecture 1 12

Data Types
• Integers

4 15110 -53 0

• Floating Point Numbers
4.0 -0.8 03333333333333333
7.34e+014

• Strings
"hello" "A" " " "" "7up!"
'there' '"' '15110'

• Booleans
True False

7/3/2017 SAMS - Lecture 1 13

Integer division

In Python3:
• 7 / 2 equals 3.5
• 7 // 2 equals 3
• 7 // 2.0 equals 3.0
• 7.0 // 2 equals 3.0
• -7 // 2 equals -4

– beware! // rounds down to smaller number, not towards 0!

7/3/2017 SAMS - Lecture 1 14

Expressions vs. Statements

• Python	 evaluates	 an	 expression to	 get	 a	 value (number	
or	 other	 value)

• Python	 executes	 a	 statement to	 perform	 an	 action	 that	
has	 an	 effect	 (e.g.,	 binding	 a	 value	 to	 a	 variable,	
printing	 something)

7/3/2017 SAMS - Lecture 1 15

Variables

• A	 variable	 is	 not an	 “unknown” as	 in	 algebra.
• In	 Python	 programming,	 a	 variable	 is	 a	 name you	
give	 a	 value.

• In	 Python	 we	 give	 a	 name	 to	 a	 value	 using	 an	
assignment	 statement:

16

>>> a = 5
>>> a
5

5a
Assignment
statement

Expression

Computer
memory

Python’s	
response

7/3/2017 SAMS - Lecture 1

Variables…

• All variable names must start with a letter
(lowercase recommended).

• The remainder of the variable name (if any) can
consist of any combination of uppercase letters,
lowercase letters, digits and underscores (_).

• Identifiers in Python are case sensitive.
Example: Value is different from value.

7/3/2017 SAMS - Lecture 1 17

Assignment statements

• In general
– variable_name = expression

• What happens?
– The expression on the right of the = is evaluated
– The variable on the left is bound to that value

• Examples
– a = 5 (a is assigned 5)
– a = 2 + 5

7/3/2017 SAMS - Lecture 1 18

Basic output

• Print
print("hello")
print("Mark")

• Print multiple items
print("hello", "Mark")
print() # prints a blank line

• Print on same line
print("hello", end ="")
print("Mark")

7/3/2017 SAMS - Lecture 1 19

Basic input

• Input a string
name = input("Enter your name: ")
print("Your name is:", name)

• Input an integer
x = input("Enter a number: ")
print(x, "divided by 2 =", x/2) #Error!

• Input an integer correctly with int()
x = int(input("Enter a number: "))
print(x, "divided by 2 =", x/2) #prints as expected

7/3/2017 SAMS - Lecture 1 20

Built-in functions

• Math library
– A predefined module of mathematical values and

functions we can use without writing the
implementation

• Examples
import math
r = 5 + math.sqrt(2)
radians = degrees * (math.pi/180)
print(math.factorial(10))

7/3/2017 SAMS - Lecture 1 21

Write your own function
def function_name(parameter_list):
☐☐☐☐statements

• def is	 a	 reserved	 word and	 cannot	 be	 used	 as	 a	
variable	 name.

• Indentation	 is	 critical. Use	 spaces	 only,	 not	
tabs!!!!

7/3/2017 SAMS - Lecture 1 22

Write your own function (example):

def tip(total):
return total * 0.18

>>> tip(100)
18.0
>>> tip(135.72)
24.4296

7/3/2017 SAMS - Lecture 1 23

Running Python

• In the shell (at the command line)

• In an IDE (Integrated Development
Environment) like IDLE or Pyzo

7/3/2017 SAMS - Lecture 1 24

Program Errors

• Syntax ("compile-time") – Python cannot
understand what you have typed

• Runtime – program crashes

• Logical/Semantic – program runs but is incorrect

7/3/2017 SAMS - Lecture 1 25

