
SAMS
Programming A/B

Lecture #2 – Functions and Conditionals
July 5/6, 2017

Mark Stehlik

7/5,6/2017 SAMS 2017 - Lecture 2 2

Outline for Today

• Functions, continued

• Conditionals (if, if-else)

• Group A will have lab here Friday; B will be in
GHC 5207, 5208, 5210 this Friday only

7/5,6/2017 SAMS 2017 - Lecture 2 3

Functions
• A function is a way to group statements together to do one

(small/specific) thing.
• Functions will be useful to organize our implementations of

algorithms (think of them as similar to paragraphs in an essay)
– paragraph is to essay as function is to algorithm
– functions are used to structure your program in a modular fashion

• Top-down Design
– Top-down design is a way to solve a problem wherein you start with a

high-level solution to the problem (an algorithm), break that solution up
into smaller steps, and then translate the solution into a program

– Often, each “small step” will be its own function
– Each function should be tested to make sure it works!

Built-in functions (from Monday)

• Python has a number of built-in functions:
– https://docs.python.org/3/library/functions.html
– Some useful ones are abs(), input(), int()

• Math library
– A predefined module of mathematical values and functions

• Examples
import math
r = 5 + math.sqrt(2)
radians = degrees * (math.pi/180)
print(math.factorial(10))

7/5,6/2017 SAMS 2017 - Lecture 2 4

Functions, continued…

• Functions are called and can take 0 or more arguments
that are bound to parameters in the function definition

• Parameters make functions more general:
– E.g., helloWorld() vs. hello(whatever)

• Functions return a value, whether you make that
explicit or not…

• Printing vs. returning a result from a function:
– Print prints the result to the console
– Return returns the result to the calling scope, allowing it to be

used in whatever way the caller needs (including printing J)

7/5,6/2017 SAMS 2017 - Lecture 2 5

Local variables and Scope rules

• Any variable defined inside the function (either
in the parameter list or in a statement) is local to
the function

• Access to that variable/value exists only during
the duration of that function’s execution

• Variables outside that scope (even with the same
name) are unchanged

• Some examples…

7/5,6/2017 SAMS 2017 - Lecture 2 6

Conditionals

• Conditional execution based on a Boolean expression
(one that evaluates to True or False)

• Boolean expressions use relational and logical operators
– Relational operators: <, <=, >, >=, ==, !=
– Logical operators: not, and, or

• Precedence (highest to lowest):
– Exponentiation
– Multiplication, division, remainder
– Addition, subtraction
– Relationals
– Logicals (not, then and, then or)

7/5,6/2017 SAMS 2017 - Lecture 2 7

Conditionals…

• if statement
if <condition>:

statement # executed if <condition> is True
• if-else statement

if <condition>:
statement # executed if <condition> is True

else:
statement # executed if <condition> is False

7/5,6/2017 SAMS 2017 - Lecture 2 8

Conditionals…

• if-elif…else statement
if <condition1>:

statement # executed if <condition1> is True
elif <condition2>:

statement # executed if <condition2> is True
elif <condition3>:

statement # executed if <condition3> is True
else:

executed if all of <condition1..n> are False

7/5,6/2017 SAMS 2017 - Lecture 2 9

Conditionals…

• if-elif…else example
if score >= 90:

print "Your grade is A!"
elif score >= 80:

print "Your grade is B!"
elif score >= 70:

print "Your grade is C!"
elif score >= 60:

print "Your grade is D!"
else: print "You have failed!"

7/5,6/2017 SAMS 2017 - Lecture 2 10

What is "true"?

• Note, not capital-T True, which is a constant
• Easier to consider what is false:

– False (I hope so!)
– None (where have we seen that?)
– Zero for any numeric type
– An empty string ("") or an empty collection (later)

• All other values are true (that's a lot of truth) in
the context of an if expression (unless compared
to True)

7/5,6/2017 SAMS 2017 - Lecture 2 11

