SAMS

Programming A/B

Week 4 Lecture - Lists
July 24, 2017

Mark Stehlik

Quiz...

- Lots of zeroes
- Indentation errors
- Returns inside loops that didn't mean to be
- Recap...
- Run your code before submission; not at very end!
- Print your function/variable values
- All grades should now be visible to you in autolab

Lists

- Similar to strings, but different
- String - an immutable sequence of characters
- List - a mutable sequence of data values

Representing Lists in Python

We will use a list to represent a collection of data values.
scores $=[78,93,80,68,100,94,85]$
colors = [‘red', 'green', ‘blue']
mixed $=$ ['purple', 100, 90.5]
A list is an ordered sequence of values and may contain values of any data type.

In Python lists may be heterogeneous (may contain items of different data types).

Lists

- More examples:
- Empty list
- $\mathrm{a}=$ []
- $\mathrm{a}=\operatorname{list}()$
- A way to create multiple duplicate elements
- $\mathrm{a} 2=[\mathrm{l} \mathrm{"}] * 9$ \# how is this different from $\mathrm{s}=\mathrm{"} \mathrm{"} \mathrm{*} \mathrm{9??}$
- arr $=[0] * 5$

Some List Operations

```
>>> names = ["Al", "Jane", "Jill", "Mark"]
>>> Al in names
error ... Al is not defined
>>> "Al" in names
True
>>> names + names
["Al", "Jane", "Jill", "Mark", "Al", "Jane",
    "Jill", "Mark"]
>>> names
["Al", "Jane", "Jill", "Mark"]
    + does not alter the original list
```


Some List Operations (continued)

>>> a = ["A", "B", "C"]
$\rightarrow \gg a+=a$
a -> ["A", "B", "C", "A", "B", "C"]

Accessing the elements of a list

- Indexing

$$
\mathrm{a}=[2,4,6,8,10,12]
$$

$\operatorname{print}(\mathrm{a}[0], \mathrm{a}[3], \mathrm{a}[6]) \# \mathrm{a}[6[$ is an index error $\operatorname{print}(\mathrm{a}[-1], \mathrm{a}[-2])$

- Valid indexes (as with strings) are

$$
\text { -len .. } 0 \text {.. len-1 }
$$

- Slicing, too

$$
\begin{aligned}
& \mathrm{a}[1: 3]->[4,6] \\
& \mathrm{a}[2:]->[6,8,10,12]
\end{aligned}
$$

List Functions

- Like strings, lists have a length
- $\operatorname{print}(\operatorname{len}(a))$
- But also other functions
- max, min, list, sum
- arr $=$ list(range(10)) produces [$0,1,2,3,4,5,6,7,8,9]$
- list("Mark") produces what?

List membership

- How to test to see if something is in the list def search(target):
for i in range(len(list)):
if (list[i] == target):
return True
return False
- Or use "in/not in"
def search(target):
return target in list

List membership

- Another way to loop over a list: def search(target):
for value in list: \# no index here, just each value from first to last if (value $=$ target):
return True
return False

List functions (and two methods)...

Operation	Result
x in s	True if an item of s is equal to x, else False
x not in s	False if an item of s is equal to x, else True
$s+\mathrm{t}$	the concatenation of s and t
$s * \mathrm{n}, \mathrm{n} * \mathrm{~s}$	n shallow copies of s concatenated
$s[i]$	ith item of s, origin 0
$s[i: j]$	slice of s from i to j
$s[i: j: k]$	slice of s from i to j with step k
len(s)	length of s
$\min (s)$	smallest item of s
max (s)	largest item of s
s. index(i)	index of the first occurence of i in s
$s . c o u n t(i)$	total number of occurences of i in s

Lists are mutable!

- Unlike strings, you can alter the contents of a list

$$
\begin{aligned}
& a=[2,4,6,8,10,12] \\
& a[0]=1 \\
& a[3]=17
\end{aligned}
$$

- You can even alter segments of the list (slices)

$$
\mathrm{a}[1: 3]=[3,5,7,9]->[2,3,5,7,9,8,10,12]
$$

\# Note: the new segment doesn't have to be the same length!

Lists are mutable!

- Another example (what does this do?)
for i in range (len(a)):

$$
\mathrm{a}[\mathrm{i}]=\mathrm{i}
$$

print(a)

- Yet another example: replace the elements of a with the first n odd numbers, e.g.
$a=[2,4,6,8,10,12]$
and I want a to be $[1,3,5,7,9,11]$
write the code to change the values of $\mathrm{a} . .$.
(in above loop, replace $\mathrm{a}[\mathrm{i}]=\mathrm{i}$ with $\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]-1$)

Lists aliases...

- Create a list

$$
a=[1,2,3]
$$

- Assign it to another variable $b=a$
- The second variable references the same list (b said to be an alias for a) print(b)
$b[2]=17$ $\operatorname{print}(\mathrm{a}, \mathrm{b})$

Lists aliases and functions...

- You're not going to like this, but function parameters are aliases as well (unlike simple types)
def double(a):
for i in range(len(a)):

$$
a[i]=2 * a[i]
$$

$a=[1,2,3]$
double(a)
print(a)

- So changes to a list parameter are seen outside the function

List methods (some alter the list)...

Operation	Result
$s[i]=\mathrm{x}$	item i of s is replaced by x
$s[i: j]=t$	slice of s from i to j is replaced by the contents of the iterable t
del $s[i: j]$	same as $s[i: j]=[]$
$s[i: j: k]=t$	the elements of $s[i: j: k]$ are replaced by those of t
del $s[i: j: k]$	removes the elements of $s[i: j: k]$ from the list
s.append(x)	same as $s[l e n(s): l e n(s)]=[x]$
s.extend($x)$	same as $s[l e n(s): l e n(s)]=x$

