SAMS
Programming A/B

Week 4 Lecture — Lists
July 24, 2017

Mark Stehlik

Lots of zeroes
Indentation errors

Returns inside loops that didn't mean to be

Recap...

— Run your code before submission; not at very end!

— Print your function/variable values

All grades should now be visible to you 1n
autolab

7/24/2017 SAMS 2017 - Lecture 4 2

* Similar to strings, but different

* String — an immutable sequence of characters

* List — a mutable sequence of data values

7/24/2017 SAMS 2017 - Lecture 4 3

Representing Lists in Python

We will use a list to represent a collection of data values.
scores = [78, 93, 80, 68, 100, 94, 85]
colors = [‘red’, ‘green’, ‘blue’]

mixed = [‘purple’, 100, 90.5]

A list 1s an ordered sequence of values and may contain
values of any data type.

In Python lists may be heterogeneous (may contain items
of different data types).

7/24/2017 SAMS 2017 - Lecture 4 4

* More examples:

— Empty list
*a=|]
e a=list()
— A way to create multiple duplicate elements
e a2=[" "]1*9 #how is this different froms=" " * 997
e arr=1[0] *5

7/24/2017 SAMS 2017 - Lecture 4 5

Some List Operations

>>> names = ["Al", "Jane", "Jill", "Mark"]

>>> Al in names
error .. Al 1is not defined

>>> "Al" in names

True . .
list concatenation

>>> names + names

["Alll, "Jane", "Jill", "Mark", "Al", "Jane",

"Jill", "Mark"]

>>> names
[IIAlII, "Jane", "Jill", llMarkll]

+ does not alter the original list

7/24/2017 SAMS 2017 - Lecture 4

Some List Operations (continued)

7/24/2017 SAMS 2017 - Lecture 4 7

Accessing the elements of a list

* Indexing
a=1[2,4,6,8, 10, 12]
print(a[0], a[3], a[6]) # a[6[1s an index error
print(a[-1], a[-2])
* Valid indexes (as with strings) are
-len .. 0 .. len-1
« Slicing, too
a[1:3] > [4, 6]
al2:] -=> [6,8, 10, 12]

7/24/2017 SAMS 2017 - Lecture 4 8

List Functions

* Like strings, lists have a length
e print(len(a))

* But also other functions
* max, min, list, sum
e arr = list(range(10)) produces
0,1,2,3,4,5,6,7,8,9]
e list("Mark") produces what?

7/24/2017 SAMS 2017 - Lecture 4 9

List membership

* How to test to see 1f something is 1n the list

def search(target):
for 1 1n range(len(list)):
if (list[1] == target):
return True

return False

e Oruse "in/not in"

def search(target):
return target in list

7/24/2017 SAMS 2017 - Lecture 4 10

List membership

* Another way to loop over a list:

def search(target):
for value 1n list: # no index here, just each value from first to last
if (value == target):
return True

return False

7/24/2017 SAMS 2017 - Lecture 4 11

List functions (and two methods)...

Operation Result
5 True If an item of sis equal to x, else rFalse
x not in s False If an item of s is equal to x, else True
s + t the concatenation of s and ¢
s *n, n*s n shallow copies of s concatenated
s[1] ith item of s, origin 0
s[i:3] slice of sfromitoj
s[i:3:k] slice of s from 7 to j with step k
len(s) length of s
min (s) smallest item of s
max (s) largest item of s
s.index (1) Index of the first occurence of iin s

s.count (1) total number of occurences ofiin s

7/24/2017 SAMS 2017 - Lecture 4 12

Lists are mutable!

« Unlike strings, you can alter the contents of a list
a=1[2,4,6,8,10,12]
a[0] =1
a[3] =17

* You can even alter segments of the list (slices)
a[1:3]1=103,5.7,.9] > [2.3.5,7,9.8, 10, 12]
Note: the new segment doesn't have to be the same length!

7/24/2017 SAMS 2017 - Lecture 4 13

Lists are mutable!

* Another example (what does this do?)
for 1 1n range (len(a)):
a[1] =1

print(a)

* Yet another example: replace the elements of a
with the first n odd numbers, ¢.g.
a=1[2,4,6,8,10, 12]
and I wantatobe[1,3,5,7,9, 11]
write the code to change the values of a...

(in above loop, replace a[1] =1 with a[1] = a[1] — 1)

7/24/2017 SAMS 2017 - Lecture 4 14

Lists aliases...

e Create a list
a=[1,2,3]

» Assign it to another variable
b=a

* The second variable references the same list (b
said to be an alias for a)
print(b)
b[2] =17
print(a, b)

7/24/2017 SAMS 2017 - Lecture 4 15

Lists aliases and functions...

* You're not going to like this, but function parameters
are aliases as well (unlike simple types)
def double(a):
for 1 1n range(len(a)):
afi] = 2 * a[i]
a=1[1,2,3]
double(a)
print(a)

* So changes to a list parameter are seen outside
the function

7/24/2017 SAMS 2017 - Lecture 4 16

List methods (some alter the list)...

Operation Result

s[i] = x item / of s is replaced by x

s[i:j] = ¢ slice of s from i to j is replaced by the
contents of the iterable ¢

del s[i:3] sameas s[i:37] = []

s[i:j:k] = ¢ the elements of s[i:5:x] are replaced by
those of ¢

del s[i:j:k] removes the elements of s[i:5:x] from
the list

.append (x) Same as s[len(=s) :len(s)] = [x]
.extend (x) Same as s[len(s) :len(=s)] = x
.count (x) return number of i's for which s[i] == x

.index(x[, 1 return smallest kK such that s[x] == x and
i <=k < j

.insert (1, sameas s[i1:1] = [x]

.pop([i]) sameas x = s[i]; del s[i]; return
>

.remove (x) sSame as del s[s.index (x)]
.reverse () reverses the items of s in place

-sort([key[, reverse]]) sort the items of s in place

7/24/2017 SAMS 2017 - Lecture 4 17

