Theoretical Foundations of Computer Science

August 9, 2017

Motivational Quote of the Day

"Computer Science is no more about computers than astronomy is about telescopes."

PART I: What is (theoretical) computer science? How was it born?

PART 2:
Uncomputable problems

PART I:
What is computer science? How was it born?

What is computer science?

Is it:

"Writing (Python) programs that do certain tasks."

What is theoretical computer science?

What is computer science?

Is it branch of:

- science?
- engineering?
- math?
- philosophy?
- sports?

Physics

Theoretical physics

- come up with mathematical models Nature's language is mathematics
- derive the logical consequences

Experimental physics

- make observations about the universe
- test mathematical models with experiments

Applications/Engineering

The role of theoretical physics

Real World

Observed
Phenomenon

Test
Consequences
Applications

Abstract World

Mathematical Model

Explore
Consequences

Theoretical Physics

- science?
- engineering?
- math?
- philosophy?
- sports?

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: rigorous description of how the data is manipulated.

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: rigorous description of how the data is manipulated.

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: rigorous description of how the data is manipulated.

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: rigorous description of how the data is manipulated.

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: rigorous description of how the data is manipulated.

The computational lens

Computational physics
Computational biology
Computational chemistry
Computational neuroscience
Computational economics
Computational finance
Computational linguistics
Computational statistics

The role of theoretical computer science

Build a mathematical model for computation.

Explore the logical consequences.
Gain insight about computation.

Look for interesting applications.

CMU undergrad

CMU Prof.

OK, we don't have everybody

The role of theoretical computer science

Real World
 Abstract World

Mathematical

Only done recently Model

Applications

Simple examples of computation

5127
x 4265
25635
307620
1025400 20508000
21866655

Doing computation by following a simple algorithm.

Simple examples of computation

Euclid's algorithm (~ 300BC):

def $\operatorname{gcd}(a, b)$:
while (b $!=0$):

$$
\begin{aligned}
& \mathrm{t}=\mathrm{b} \\
& \mathrm{~b}=\mathrm{a} \% \mathrm{~b} \\
& \mathrm{a}=\mathrm{t}
\end{aligned}
$$

return a

We have been using algorithms for thousands of years.

Formalizing computation

We have been using algorithms for thousands of years.

Algorithm/Computation was only formalized in the 20th century!

Someone had to ask the right question.

David Hilbert, I900

The Problems of Mathematics

"Who among us would not be happy to lift the veil behind which is hidden the future; to gaze at the coming developments of our science and at the secrets of its development in the centuries to come? What will be the ends toward which the spirit of future generations of mathematicians will tend? What methods, what new facts will the new century reveal in the vast and rich field of mathematical thought?"

2 of Hilbert's Problems

Hilbert's IOth problem (1900)

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

$$
\text { e.g. } \quad 5 x^{2} y z^{3}+2 x y+y-99 x y z^{4}=0
$$

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

(Mechanization of mathematics)

2 of Hilbert's Problems

Fortunately, the answer turned out to be NO.

2 of Hilbert's Problems

Gödel (1934):

Discusses some ideas for mathematical definitions of computation. But not confident what is a good definition.

Church (1936):

Invents lambda calculus.
Claims it should be the definition of an "algorithm".

Gödel, Post (1936):
Arguments that Church's claim is not justified.

Meanwhile... in New Jersey... a certain British grad student, unaware of all these debates...

2 of Hilbert's Problems

Alan Turing (1936, age 22):

Describes a new model for computation, now known as the Turing Machine. ${ }^{\text {TM }}$

Gödel, Kleene, and even Church:

"Umm. Yeah. He nailed it. Game over. "Algorithm" defined."

Turing (1937):

TMs ミ lambda calculus

Formalization of computation: Turing Machine

Turing Machine:

Church-Turing Thesis

Church-Turing Thesis:

The intuitive notion of "computable" is captured by functions computable by a Turing Machine.

(Physical) Church-Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Real World
 Abstract World

Church-TuringThesis

Back to 2 of Hilbert's Problems

Hilbert's IOth problem (1900)

Is there an algorithm (a TM) to determine if a given multivariate polynomial with integral coefficients has an integral solution?

$$
\text { e.g. } \quad 5 x^{2} y z^{3}+2 x y+y-99 x y z^{4}=0
$$

Entscheidungsproblem (1928) Is there an algorithm (a TM) to determine the validity of a given logical expression?

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

(Mechanization of mathematics)

Back to 2 of Hilbert's Problems

Hilbert's IOth problem (1900)

Matiyasevich-Robinson-Davis-Putnam (1970):

There is no algorithm to solve this problem.
Entscheidungsproblem (1928)

Turing (1936):

There is no algorithm to solve this problem.

Computer Science

- science?
- engineering?
- math?
- philosophy?
- sports?

2 Main Questions in TCS

Computability of a problem:
Is there an algorithm to solve it?

Complexity of a problem:
Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

Computational Complexity

Complexity of a problem:
Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

2 camps:

- trying to come up with efficient algorithms (algorithm designers)
- trying to show no efficient algorithm exists (complexity theorists)

Computational Complexity

2 camps:

- trying to come up with efficient algorithms (algorithm designers)
- trying to show no efficient algorithm exists (complexity theorists)
multiplying two integers
factoring integers
sorting a list
protein structure prediction
simulation of quantum systems
computing Nash Equilibria of games

PART 2:

Uncomputable problems

Working as a TA for 15-1I2

We need to write an autograder for isPrime
student submission isPrime
the correct program isPrime

Do they return True on exactly the same inputs?

Working as a TA for $15-112$

We need to write an autograder for isPrime

Kosbie's version

Student submission

True
or
False

Working as a TA for 15-1I2

A "simpler" problem

Write an "autograder" that checks if a given program goes into an infinite loop.

Working as a TA for 15-1I2

Halting Problem

Inputs: A Python program source code. 常 An input to the program. x

Output: True if the program halts for the given input. False otherwise.

Theorem: The halting problem is uncomputable.

"Proof"

Assume, for the sake of contradiction, such a program exists:

def halt(program, inputToProgram):
 \# program and inputToProgram are both strings

"Proof"

Assume, for the sake of contradiction, such a program exists:

def halt(program, inputToProgram):
 \# program and inputToProgram are both strings

def turing(program):
if (halt(program, program)): while True:
pass \# i.e. do nothing
return False

"Proof"

"Proof"

Assume, for the sake of contradiction, such a program exists:

> def halt(program, inputToProgram):
> \# program and inputToProgram are both strings
def turing(program):
if (halt(program, program)): while True:
pass \# i.e. do nothing
return False

What happens when you call turing(turing) ?

"Proof"

"Proof"

Assume, for the sake of contradiction, such a program exists:

def halt(program, inputToProgram):
 \# program and inputToProgram are both strings

def turing(program):
if (halt(program, program)): while True:
pass \# i.e. do nothing
return False

What happens when you call turing(turing) ?
if halt(turing, turing) is True ----> turing(turing) doesn't halt if halt(turing, turing) is False ----> turing(turing) halts

"Proof"

Assume, for the sake of contradiction, such a program exists:

```
def halt(program, inputToProgram):
\# program and inputToProgram are both strings
```

def turing(program):
if (halt(program, program)): while True: pass \# i.e. do nothing return False

What happens when you call turing(turing) ?

So what?

- No guaranteed autograder program. ${ }^{\circ}$
- Consider the following program: def fermat():

$$
t=3
$$

while (True):
for n in range $(3, t+1)$:
for x in range $(1, t+1)$:
for y in range $(1, t+1)$:
for z in range $(1, t+1)$:

if $\left(\mathrm{x}^{* *} \mathrm{n}+\mathrm{y}^{* *} \mathrm{n}==\mathrm{z}^{* *} \mathrm{n}\right):$ return $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{n})$
$t+=1$
Question: Does this program halt?

So what?

- Consider the following program (written in MAPLE):

> numberToTest := 2;
flag := 1 ;
while flag $=1$ do
flag := 0;
numberToTest := numberToTest +2 ;
for p from 2 to numberToTest do
if isPrime (p) and isPrime(numberToTest-p) then flag := 1 ; break; \#exits the for loop end if
end for
Goldbach
Conjecture
end do
Question: Does this program halt?

So what?

- Reductions to other problems imply that those problems are uncomputable as well.

Entscheidungsproblem

Is there an algorithm to determine the validity of a given logical expression?

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

Hilbert's IOth Problem

Is there an algorithm to determine if a given multivariate polynomial with integral coefficients has an integral solution?

So what?

Input: A finite collection of "dominoes" having strings written on each half.

Output: True if it is possible to match the strings.

Uncomputable!
Proved in 1946 by Post.

So what?

Input: A finite collection of "Wang Tiles" (squares) with colors on the edges.

Output: True if it is possible to make an infinite grid from copies of the given squares, where touching sides must color-match.

Uncomputable!
Proved in 1966 by Berger.

So what?

Input: Two 21×21 matrices of integers A and B.

Output: True iff it is possible to multiply A and B together (multiple times in any order) to get to the 0 matrix.

Uncomputable!

Proved in 2007 by Halava, Harju, Hirvensalo.

So what?

Different laws of physics ----->
Different computational devices ----->

Every problem computable (???)

Can you come up with sensible laws of physics such that the Halting Problem becomes computable?

That was about the basic question on whether every problem is computable.

Some other interesting questions in TCS

Time vs Space

If a problem has a space-efficient solution does it also have a time-efficient solution?

Power of randomness

Can every randomized algorithm be derandomized efficiently?

Power of quantum information
Can we use quantum properties of matter to build faster computers?
\mathbf{P} vs $\mathbf{N P}$

