
Theoretical Foundations of
Computer Science 

August 9, 2017



“Computer Science is no more about computers
than astronomy is about telescopes.”

Motivational Quote of the Day

- Edsger Dijkstra

- Michael Fellows



PART 1:
What is (theoretical) computer science?

How was it born?

PART 2:
Uncomputable problems



PART 1:
What is computer science?

How was it born?



What is computer science?

“Writing (Python) programs  
  that do certain tasks.”

Is it:

What is theoretical computer science?



What is computer science?

Is it branch of:

- science?
- engineering?
- math?
- philosophy?
- sports?



Physics

Theoretical physics

Experimental physics

Applications/Engineering

- come up with mathematical models

- derive the logical consequences

- test mathematical models with experiments

- make observations about the universe

Nature’s language is mathematics



The role of theoretical physics

Observed
Phenomenon

Mathematical
Model

Explore
Consequences

Test
Consequences

Real World Abstract World

Applications



Theoretical Physics

- science?
- engineering?
- math?
- philosophy?
- sports?



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Algorithm:  rigorous description of how the data is  
                 manipulated.

Input Output“Computer”



Computer Science 

The science that studies computation.

Computation:  manipulation of information/data.

Input OutputCalculator

Algorithm:  rigorous description of how the data is  
                 manipulated.



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Input OutputLaptop

Algorithm:  rigorous description of how the data is  
                 manipulated.



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Input OutputHuman

Algorithm:  rigorous description of how the data is  
                 manipulated.



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Input OutputEvolution

Algorithm:  rigorous description of how the data is  
                 manipulated.



The computational lens

Computational biology

Computational physics

Computational chemistry

Computational neuroscience

Computational economics

…

Computational finance

Computational linguistics

Computational statistics



The role of theoretical computer science

Build a mathematical model for computation.

Explore the logical consequences.
Gain insight about computation.

Look for interesting applications.

CMU undergrad CMU Prof. OK, we don’t have
everybody

http://youtu.be/pTeZP-XfuKI

https://goo.gl/gGkpMv 

http://youtu.be/J4TkHuTmHsg 



The role of theoretical computer science

Computation Mathematical
Model

Explore
Consequences

Real World Abstract World

Applications

Only done recently



Simple examples of computation

Doing computation by following a simple algorithm.



Simple examples of computation

Euclid’s algorithm (~ 300BC):

def gcd(a, b):

while (b != 0):

t = b
b = a % b
a = t

return a

We have been using algorithms for thousands of years.



Formalizing computation

We have been using algorithms for thousands of years.

Algorithm/Computation was only formalized in the 
20th century!

Someone had to ask the right question.



David Hilbert, 1900

The Problems of Mathematics
“Who among us would not be happy to lift the veil behind which is 
hidden the future; to gaze at the coming developments of our science 
and at the secrets of its development in the centuries to come? What 
will be the ends toward which the spirit of future generations of 
mathematicians will tend? What methods, what new facts will the new 
century reveal in the vast and rich field of mathematical thought?”



2 of Hilbert’s Problems

Is there a finitary procedure to determine if a given 
multivariate polynomial with integral coefficients has an 
integral solution?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0



2 of Hilbert’s Problems

Fortunately, the answer turned out to be NO.



2 of Hilbert’s Problems

Meanwhile… in New Jersey… a certain British grad student,
unaware of all these debates…

Gödel (1934):
Discusses some ideas for mathematical definitions of 
computation. But not confident what is a good definition.

Church (1936):
Invents lambda calculus. 
Claims it should be the definition of an “algorithm”.

Gödel, Post (1936):
Arguments that Church’s claim is not justified.



2 of Hilbert’s Problems

Alan Turing (1936, age 22):
Describes a new model for computation,
now known as the Turing Machine.™

Gödel, Kleene, and even Church:
“Umm.  Yeah.  He nailed it.  Game over.  “Algorithm” defined.”

Turing (1937):
TMs      lambda calculus



Formalization of computation:  Turing Machine

Turing Machine:



Church-Turing Thesis

Church-Turing Thesis:
The intuitive notion of “computable” is captured by 
functions computable by a Turing Machine.

Any computational problem that can be solved by a 
physical device, can be solved by a Turing Machine.

(Physical) Church-Turing Thesis

Real World Abstract World
Church-Turing Thesis



Back to 2 of Hilbert’s Problems

Is there an algorithm (a TM) to determine if a given 
multivariate polynomial with integral coefficients has an 
integral solution?

Entscheidungsproblem (1928)
Is there an algorithm (a TM) to determine the 
validity of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0



Back to 2 of Hilbert’s Problems

Entscheidungsproblem (1928)

Hilbert’s 10th problem (1900)

There is no algorithm to solve this problem.

Matiyasevich-Robinson-Davis-Putnam (1970):

There is no algorithm to solve this problem.
Turing (1936):



Computer Science

- science?
- engineering?
- math?
- philosophy?
- sports?



2 Main Questions in TCS

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources



Computational Complexity

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

2 camps:
- trying to come up with efficient algorithms
  (algorithm designers)

- trying to show no efficient algorithm exists
  (complexity theorists)



Computational Complexity

2 camps:
- trying to come up with efficient algorithms
  (algorithm designers)

- trying to show no efficient algorithm exists
  (complexity theorists)

multiplying two integers

sorting a list
protein structure prediction

computing Nash Equilibria of games
simulation of quantum systems

factoring integers



PART 2:
Uncomputable problems



Working as a TA for 15-112

We need to write an 
autograder for

isPrime

isPrime

the correct programstudent submission

isPrime

Do they return True on exactly the same inputs?



Working as a TA for 15-112

We need to write an 
autograder for

isPrime

returns True on 
exactly same inputs?

True
or

False

Kosbie’s
version

Student
submission



Working as a TA for 15-112

Write an “autograder”
that checks if a given program
goes into an infinite loop. 

A “simpler” problem



Working as a TA for 15-112

Halting
Program

x

True
or

False

Output:  True if the program halts for the given input.
                False otherwise.

Halting Problem
Inputs:  A Python program source code.
              An input to the program. x

Theorem: The halting problem is uncomputable.



“Proof”
Assume, for the sake of contradiction, such a program exists:

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
   

halt
True

or

False

program

inputToProgram



“Proof”

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
   
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return False

Assume, for the sake of contradiction, such a program exists:



“Proof”

Halt Loop
forever

yesno

input

(input, input)

Does it
halt?

(viewed as the source code 
of a program)turing



“Proof”

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
   
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return False

What happens when you call  turing(turing) ?

Assume, for the sake of contradiction, such a program exists:



“Proof”

Halt Loop
forever

yesno

(input, input)

Does it
halt?



“Proof”

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
   
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return False

What happens when you call  turing(turing) ?
if halt(turing, turing) is True

if halt(turing, turing) is False

----> turing(turing) doesn’t halt

----> turing(turing) halts

Assume, for the sake of contradiction, such a program exists:



“Proof”

def halt(program, inputToProgram):
    # program and inputToProgram are both strings
   
def turing(program):
    if (halt(program, program)):
        while True:
            pass   # i.e. do nothing
    return False

Assume, for the sake of contradiction, such a program exists:

if halt(turing, turing) is True

if halt(turing, turing) is False

----> turing(turing) doesn’t halt

----> turing(turing) halts

What happens when you call  turing(turing) ?



So what?

- Consider the following program:
def fermat():
    t = 3
    while (True):
        for n in range(3, t+1):
            for x in range(1, t+1):
                for y in range(1, t+1):
                    for z in range(1, t+1):
                        if (x**n + y**n == z**n):  return (x, y, z, n)
        t += 1

Question: Does this program halt? 

- No guaranteed autograder program.



So what?

numberToTest := 2; 
flag := 1; 
while flag = 1 do 
    flag := 0; 
    numberToTest := numberToTest + 2;  
    for p from 2 to numberToTest do 
        if isPrime(p) and isPrime(numberToTest−p) then  
            flag := 1; 
            break;       #exits the for loop  
        end if 
    end for 
end do

Question: Does this program halt? 

- Consider the following program (written in MAPLE):

Goldbach
Conjecture



So what?

- Reductions to other problems
  imply that those problems are uncomputable as well.

Is there an algorithm to determine if a given 
multivariate polynomial with integral coefficients has 
an integral solution?

Hilbert’s 10th Problem

Entscheidungsproblem 
Is there an algorithm to determine the validity of a 
given logical expression?

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.



So what?

Input:  A finite collection of  “dominoes”
           having strings written on each half.

Output:  True if it is possible to match the strings.

abccabcc

abccabcc

Uncomputable!
Proved in 1946 by Post.



So what?

Input:  A finite collection of  “Wang Tiles” (squares)
           with colors on the edges.

Output:  True if it is possible to make an infinite grid
               from copies of the given squares,
               where touching sides must color-match.

Uncomputable!
Proved in 1966 by Berger.



So what?

Input:  Two 21x21 matrices of integers      and     .A B

Output:  True iff it is possible to multiply      and
                together (multiple times in any order)
                to get to the 0 matrix.

A B

Uncomputable!
Proved in 2007 by Halava, Harju, Hirvensalo.



So what?

Different laws of physics ----->

Different computational devices ----->

Every problem computable (???)

Can you come up with sensible laws of physics
such that the Halting Problem becomes computable?



That was about the basic question on whether
every problem is computable.



Some other interesting questions in TCS

P vs NP

If a problem has a space-efficient solution
does it also have a time-efficient solution?

Time vs Space

Can every randomized algorithm be derandomized 
efficiently?

Power of randomness

Can we use quantum properties of matter to build 
faster computers?

Power of quantum information


