SAMS
Programming - Section C

Lecture 3:
Intro to loops

for iterating_varin sequence :
statement(s)

T A If no more item in sequence

sequence

Next item from sequence

execute statement(s)

45 July 7,2017

Approximate value of floats

Math module

My first ever program

R R 2 R S R B R 2 R 2 S
SRASKAKAKAK K
R0 R S R S R 2 2 2 S
SRARAKAK KK
R 2 R S R 2 S
KKK

R R 2 R 2 S
KKK

KEKK

KKK

KK

X

My first ever program

I nt(‘ DR R S R S 2 S 2 2 2 2 3 3 ’)
I nt(‘ CRRRRRRRRRKR? ’)
I nt(“**********”)
I nt(‘ R ’)

I nt(“********”)

I nt(“*******”)

I nt(“******”)

Hrint(‘oerEERER?)
Srint (o)
Srint (‘)
Srint(“F)
Srint(“*”)

There is a
better way!

Loops give you wings.

2 types of loops in Python

* for loop

while loop

for loop

for var-name in sequence:

loop-body
repeat 5 times: — fori1in[1,2,3,4,5]:
print(“Hello™) print(“Hello™)
l loop body

(can be as many lines as you want)
(but this is not valid
Python syntax)

iteration: a single execution of the instructions in
the loop body.

for loop

for var-name in sequence:
loop-body

foriin|[1,2,3,4,5]] —

list (a data type in Python)

print(“Hello™)

Same as:
print(“Hello”) | st iteration: i=1
print(“Hello™) 2nd iteration: i=2
print(“Hello™) 3rd iteration: i=3
Pfint(“;igeg-lo”) 4th iteration: i=4
print(“Hello™) Sth iteration: i=5

for loop

for var-name in sequence:

loop-body

fori1in|[1, 2, 3,4, 5]:

print(1)

Same as:

print(1)
print(2)
print(3)
print(4)
print(S)

| st iteration:
2nd iteration:
3rd iteration:
4th iteration:
5th iteration:

. ©
Il

. . ©
1

e
[l 1
N K~ W N =

. ©
1

for loop

for var-name in sequence:
loop-body

range(n) = [0, |, 2,...,n-1]

foriin[0,1,2,3,4]: for 1 in range(5):
print(1) print(1)

for loop

for var-name in sequence:

loop-body
def sumToN(n): total =0
total =0 total +=0
for 1 In range(n+1): total +=1
total +=1 total +=2
return total total += 3
total +=4

return total

print(sumToN(4))

for loop

for var-name in sequence:
loop-body

range(m,n) = [m, m+|,m+2, ..., n-1]

def sumFromMToN(m, n):
total =0
for 1 in range(m, n+1):
total +=1
return total

2 types of loops in Python

for loop

» while loop

while loop

= instructionl

while(expression):
instruction?
instruction3
instructiond

loop body

The code in the loop body should change something
related to the expression.

while loop example

def getPositivelnteger():
userlnput =0
while (userInput <= 0):
userInput = int(input("Enter a positive integer: "))
return userlnput

while loop

Repeating a block a certain number of times:

counter = 1
repeat 5 times: while(counter <= 5):
instructionl — instructionl
instruction2 instruction?
l counter += 1

(but this is not valid
Python syntax)

Never use while loops to do this. Use for loops.

while loop example

def countToN(n):
counter = |
while (counter <= n):
print(counter)
counter += 1

| st iteration:

2nd iteration:
3rd iteration:
4th iteration:

n’th iteration:

counter = 1
counter = 2
counter = 3
counter = 4

counter = n

while loop example

def sumToN(n):
counter = 1
total =0
while (counter <= n):
total += counter
counter += 1
return total

while loop example

def sumFromMToN(m, n):
counter = m
total =0
while (counter <= n):
total += counter
counter += 1
return total

Again: never use while loops to do these.
Use for loops.

Common Loop Bug |

Off by | error

def sumToN(n):
total =0
counter =0
while (counter <= n):
counter += 1
total += counter
return total

Loop conditions that results in the loop body being

executed either:
- | time too few Manually check

- | time too many first and last iterations!

Common Loop Bug 2

Infinite Loops

counter = 1
while (counter < 10):

Do some awesome complicated computation
...
Then forget to increment counter

In the body, you have to change something
related to the condition being checked.

for loop vs while loop

1=0
for 1 in range(10): while (i < 10):
some code # some code
1+=1

For loop is the right choice here!

Use while loop when the number of iterations is
indefinite.

e.g. continue to do something until a certain event

Example: leftmost digit

Write a function that
- takes an integer n as input,
- returns its leftmost digit.

e.g. 409283402013 should return 4

|ldea:

Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n):
while (n >= 10):
n=n//10
return n

Example: leftmost digit

Write a function that
- takes an integer n as input,
- returns its leftmost digit.

e.g. 409283402013 should return 4

|ldea:

Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n):
n = abs(n)
while (n >= 10):
n//=10
return n

Exercise: Testing primality

Write a function that:
- Gets an integer input
- Returns True if the integer is prime
- Returns False otherwise

prime:
- greater than |,
- is only divisible by | and itself

Exercise: Testing primality

Steps to follow

- Find a mental picture of the solution
- Write an algorithm
- Write the code

_TEST!

- Fix the bugs (if any)

Exercise: Testing primality

- Find a mental picture of the solution

Example input: 961748941

How would you figure out the answer
if you had paper, pencil, and calculator?

Exercise: Testing primality

Steps to follow

- Find a mental picture of the solution
- Write an algorithm
- Write the code

_TEST!

- Fix the bugs (if any)

Exercise: Testing primality

- Write an algorithm

Algorithm:

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

Exercise: Testing primality

- Write an algorithm

Algorithm:

- Let n denote the input number.
- Go through every number from 2 to n-1.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

Exercise: Testing primality

Steps to follow

- Find a mental picture of the solution
- Write an algorithm
- Write the code

_TEST!

- Fix the bugs (if any)

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):
for possibleFactor in range(2, n):

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):
for possibleFactor in range(2, n):
Check if possibleFactor divides n

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):
for possibleFactor in range(2, n):
if (n % possibleFactor == 0): return False

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):
for possibleFactor in range(2, n):
if (n % possibleFactor == 0): return False
return True

Exercise: Testing primality

- Write the code

- Let n denote the input number.
- Go through every number from 2 to n-|.

- If one of these numbers divides n, then n is not prime.

- Otherwise, n is prime.

def 1sPrime(n):
if (n < 2): return False
for possibleFactor in range(2, n):
if (n % possibleFactor == 0): return False
return True

Exercise: Testing primality

Steps to follow

- Find a mental picture of the solution
- Write an algorithm
- Write the code

_TEST!

- Fix the bugs (if any)

Exercise: Testing primality

_TEST!
def testIsPrime():

assert(not 1sPrime(0))
assert(not 1sPrime(1))
assert(not 1sPrime(-1))

assert(isPrime(2))

assert(not 1sPrime(-2)) Passes
assert(isPrime(3))

assert(not 1sPrime(4)) all
assert(isPrime(5)) tests!

assert(not 1sPrime(6))
assert(not 1sPrime(-3))
assert(isPrime(251))
assert(not 1sPrime(15251))
print(“‘Passed all tests!”)

FnCiuag <sfdidc.yy i
int mgin(void) éi

L

int count 5

for (count = 13 count <= 500 ; count++) |
prntE ("I will not Throw paper dirplanes n class."); ,

refurn O |

.

———
LT

