
July 7, 2017

SAMS
Programming - Section C

Lecture 3:
Intro to loops

Approximate value of floats

Math module

My first ever program

**
*

My first ever program

print(“************”)
print(“***********”)
print(“**********”)
print(“*********”)
print(“********”)
print(“*******”)
print(“******”)
print(“*****”)
print(“****”)
print(“***”)
print(“**”)
print(“*”)

There is a
better way!

Loops give you wings.

2 types of loops in Python

for loop

while loop

for loop

for var-name in sequence:
 loop-body

repeat 5 times:
 print(“Hello”)

for i in [1, 2, 3, 4, 5]:
 print(“Hello”)

(but this is not valid
Python syntax)

iteration: a single execution of the instructions in
 the loop body.

loop body
(can be as many lines as you want)

for loop

for var-name in sequence:
 loop-body

for i in [1, 2, 3, 4, 5]:
 print(“Hello”)

1st iteration:
2nd iteration:
3rd iteration:
4th iteration:
5th iteration:

i = 1
i = 2
i = 3
i = 4
i = 5

print(“Hello”)
print(“Hello”)
print(“Hello”)
print(“Hello”)
print(“Hello”)

Same as:

list (a data type in Python)

for loop

for var-name in sequence:
 loop-body

for i in [1, 2, 3, 4, 5]:
 print(i)

1st iteration:
2nd iteration:
3rd iteration:
4th iteration:
5th iteration:

i = 1
i = 2
i = 3
i = 4
i = 5

print(1)
print(2)
print(3)
print(4)
print(5)

Same as:

for loop

for var-name in sequence:
 loop-body

range(n) ≈ [0, 1, 2, …, n-1]

for i in range(5):
 print(i)

for i in [0, 1, 2, 3, 4]:
 print(i)

for loop

def sumToN(n):

for var-name in sequence:
 loop-body

print(sumToN(4))

total = 0
total += 0
total += 1
total += 2
total += 3
total += 4
return total

 total = 0
 for i in range(n+1):
 total += i
 return total

for loop

def sumFromMToN(m, n):

for var-name in sequence:
 loop-body

range(m, n) ≈ [m, m+1, m+2, …, n-1]

 total = 0
 for i in range(m, n+1):
 total += i
 return total

2 types of loops in Python

for loop

while loop

while loop

instruction1
while(expression):
 instruction2
 instruction3
instruction4

The code in the loop body should change something
related to the expression.

loop body

while loop example

def getPositiveInteger():
 userInput = 0
 while (userInput <= 0):
 userInput = int(input("Enter a positive integer: "))

 return userInput

while loop

Repeating a block a certain number of times:

Never use while loops to do this. Use for loops.

repeat 5 times:
instruction1
instruction2

counter = 1

while(counter <= 5):
instruction1
instruction2
counter += 1

(but this is not valid
Python syntax)

while loop example

def countToN(n):
 counter = 1
 while (counter <= n):
 print(counter)
 counter += 1

1st iteration:
2nd iteration:
3rd iteration:
4th iteration:

counter = 1
counter = 2
counter = 3
counter = 4

n’th iteration: counter = n

...

while loop example

def sumToN(n):
 counter = 1
 total = 0
 while (counter <= n):
 total += counter
 counter += 1
 return total

while loop example

def sumFromMToN(m, n):
 counter = m
 total = 0
 while (counter <= n):
 total += counter
 counter += 1
 return total

Again: never use while loops to do these.
Use for loops.

Loop conditions that results in the loop body being
executed either:
 - 1 time too few
 - 1 time too many

Common Loop Bug 1

def sumToN(n):
 total = 0  
 counter = 0  
 while (counter <= n): 
 counter += 1  
 total += counter  
 return total

Manually check
first and last iterations!

Off by 1 error

Common Loop Bug 2

In the body, you have to change something
related to the condition being checked.

counter = 1
while (counter < 10):
 # Do some awesome complicated computation
 # ...
 # Then forget to increment counter

Infinite Loops

for loop vs while loop

for i in range(10):
 # some code

i = 0
while (i < 10):
 # some code

 i += 1

Use while loop when the number of iterations is
indefinite.

e.g. continue to do something until a certain event

For loop is the right choice here!

Example: leftmost digit

Write a function that
 - takes an integer n as input,
 - returns its leftmost digit.

e.g. 409283402013 should return 4

Idea:
Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n): 
 while (n >= 10): 
 n = n // 10
 return n

Example: leftmost digit

Write a function that
 - takes an integer n as input,
 - returns its leftmost digit.

e.g. 409283402013 should return 4

Idea:
Repeatedly get rid of rightmost digit until one digit is left.

def leftmostDigit(n):
 n = abs(n)  
 while (n >= 10): 
 n //= 10
 return n

Exercise: Testing primality

Write a function that:
 - Gets an integer input
 - Returns True if the integer is prime
 - Returns False otherwise

prime:
 - greater than 1,
 - is only divisible by 1 and itself

Exercise: Testing primality

- Find a mental picture of the solution

- Write an algorithm

- Write the code

- TEST!

- Fix the bugs (if any)

Steps to follow

Exercise: Testing primality

- Find a mental picture of the solution

Example input: 961748941

How would you figure out the answer
if you had paper, pencil, and calculator?

Exercise: Testing primality

- Find a mental picture of the solution

- Write an algorithm

- Write the code

- TEST!

- Fix the bugs (if any)

Steps to follow

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Algorithm:

- Write an algorithm

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

Algorithm:

- Write an algorithm

Exercise: Testing primality

- Find a mental picture of the solution

- Write an algorithm

- Write the code

- TEST!

- Fix the bugs (if any)

Steps to follow

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

def isPrime(n):

- Write the code

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

def isPrime(n):
 for possibleFactor in range(2, n):

- Write the code

Exercise: Testing primality

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

def isPrime(n):
 for possibleFactor in range(2, n):
 # Check if possibleFactor divides n

- Write the code

Exercise: Testing primality

def isPrime(n):
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

- Write the code

Exercise: Testing primality

def isPrime(n):
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False
 return True

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

- Write the code

Exercise: Testing primality

def isPrime(n):
 if (n < 2): return False
 for possibleFactor in range(2, n):
 if (n % possibleFactor == 0): return False
 return True

- Let n denote the input number.
- Go through every number from 2 to n-1.
- If one of these numbers divides n, then n is not prime.
- Otherwise, n is prime.

- Write the code

Exercise: Testing primality

- Find a mental picture of the solution

- Write an algorithm

- Write the code

- TEST!

- Fix the bugs (if any)

Steps to follow

Exercise: Testing primality

- TEST!
def testIsPrime():
 assert(not isPrime(0))
 assert(not isPrime(1))
 assert(not isPrime(-1))
 assert(isPrime(2))
 assert(not isPrime(-2))
 assert(isPrime(3))
 assert(not isPrime(4))
 assert(isPrime(5))
 assert(not isPrime(6))
 assert(not isPrime(-3))
 assert(isPrime(251))
 assert(not isPrime(15251))
 print(“Passed all tests!”)

Passes
all

tests!

