
July 10, 2017

SAMS
Programming - Section C

Week 2 - Lecture 1:
How computers work + Intro to strings

On the menu today

How does a computer work?
(looking under the hood)

Introduction to strings

break and continue statements

How does a computer work?

How does a computer work?

1. How does a computer represent data (information)?

3. How does a computer process information?

2. What are the basic components of computers?

How does a computer represent data?

What is the most basic data/information that can be
stored with an electronic device?

On or Off. Is electrical current flowing or not.

What is the most basic (useful) electronic device?

A switch.

How does a computer represent data?

If interested in representing binary data,
can do it with a single switch.

Examples:

(Yes or No) (On of Off) (0 or 1) (Apple or Orange)

Why stop at 1 switch?
What can we do with 2 switches?

Switch 1 Switch 2
Off Off
On Off
Off On
On On

4 different options:
 Can represent 4 different
 values.

e.g. can represent 0, 1, 2, 3

0
1
2
3

How does a computer represent data?

Why stop at 2 switches?
What can we do with 3 switches?

What can we do with 300 switches?

With switches, can represent different values.n 2n

We can have millions of switches
(these switches are tiny).

(To represent different values, need switches.)n ⇠ log2 n

With switches, can represent different values.300 2300

2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397376

2300 ⇠ number of atoms in the observable universe.

How does a computer represent data?

“Everything in a computer is just 0s and 1s”

How does a computer represent data?

With enough switches/bits (0s and 1s),
we can represent any kind of data.

In computer science:

A bit represents either 0 or 1.A switch is called a bit.

So all data is a string of 0s and 1s.

A switch’s state (off or on) is represented by 0 or 1

How does a computer represent data?

Representing integers with 0s and 1s.

Switch (bit) number: 7 6 5 4 3 2 1 0

The convention:

Values: 1 1 0 1 0 0 1 1

Number represented: 2021242627+ + + +

= 211

How does a computer represent data?

Representing characters (and text).
The American Standard Code for Information Interchange

(ASCII)

1 byte = 8 bits

1 kilobyte = bytes (1024 bytes)

1 megabyte = kilobytes

1 gigabyte = 1,000,000,000 bytes

210

210

How does a computer work?

1. How does a computer represent data (information)?

3. How does a computer process information?

2. What are the basic components of computers?

Basic components of computers

3 Main Parts:

Input/Output components

Memory (Storage)

Central Processing Unit (CPU)

Basic components of computers

Input/Output components

Input: keyboard, mouse, microphone.

Output: screen, speakers.

Basic components of computers

3 Main Parts:

Input/Output components

Memory (Storage)

Central Processing Unit (CPU)

Basic components of computers

Memory (Storage)
2 Main Parts

Stores “active” (currently used) data.
CPU can directly access it.
When a program terminates, contents are lost.

Stores “inactive” data. (e.g. videos you are not watching.)
CPU does not directly access it.
Contents are not lost when computer shuts down.
Access time is much slower compared to RAM.

- RAM (Random Access Memory)

- Hard drive (and other secondary storage)

Basic components of computers

Memory (Storage)
Closer look at RAM (Main memory)

2843

2844

2845

2846

2847

2848

2849

2850

Address

memory cell...
...

Main memory is divided into
many memory locations (cells)

Each memory cell has a
numeric address which uniquely
identifies it.

Each cell contains 1 byte of data.

Basic components of computers

3 Main Parts:

Input/Output components

Memory (Storage)

Central Processing Unit (CPU)

Basic components of computers

Central Processing Unit (CPU)

The “action” part of computer’s brain.

Carries out the instructions of a program.
- Arithmetic operations.
- Logical operations.
- input/output operations.

The instructions it understands are very basic:

LOAD
READ

ADD DISP
STORE

How does a computer work?

1. How does a computer represent data (information)?

3. How does a computer process information?

2. What are the basic components of computers?

How does a computer process information?

Example: Read a number from the keyboard, add 1 to it,
then display the new value on the screen.

memory
location LOAD 17

READ 17

ADD
STORE 18
DISP 18

How does a computer process information?

The instructions that the CPU understands is called the
machine language.

But CPU can only understand 0s and 1s.
Each instruction is represented by a series of bits.

Previous example: Read a number from the keyboard, add
1 to it, then display the new value on the screen.

The first 20 bytes of the machine language:
01111111 01000101 01001100 01000110 00000001

00000001 00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000010 00000000 00000011 00000000

MORE THAN 6500 BYTES IN TOTAL!

How do programmers process information?

Surely you don’t want to write code in machine language!

- Tedious, confusing, hard to read.

- If you change one bit by accident,
program’s behavior will be totally different.

- Errors are hard to find and correct.

How do programmers process information?

High-Level Programming Languages

The idea:

(One instruction in a high-level language can correspond
to hundreds of instructions in machine language.)

- Develop a language that is a mix of English and math.
(easy to read, understand, and write)

CompilerHigh-level
language code

Machine language
code

The secret to programming/computing

Many layers of abstraction.

- We start with electronic switches.

- We abstract away and represent data with 0s and 1s.

- We have machine language (0s and 1s) to tell the
computer what to do.

- We abstract away and build/use high-level languages.

- We abstract away and build/use functions and objects
(more on this later).

This is how large, complicated programs are built!

break
continue

break
Break out of the loop

def countToN(n):
 counter = 1
 while(True):
 print(counter)
 if(counter == n):
 break
 counter += 1

once this is executed,
you leave the loop body

break

def sumGivenNumbers():
 total = 0
 while(True):
 x = input("Enter number (or 'done' to quit): ")
 if(x == "done"):
 break
 else:
 total += int(x)
 return total

print(sumGivenNumbers())

Break out of the loop

break
In a while loop, condition is checked at the beginning

while(expression):
 …

while(True):
 if(not expression):
 break
 …

=

Using a break statement, can check condition
anywhere

while(True):
 …
 if(not expression):
 break
 …

continue
Break out of the current iteration

def sumOfOddsToN(n):
 total = 0
 for i in range(1, n+1):
 if(i % 2 == 0):
 continue
 total += i
 return total

skip to the next iteration

continue
Break out of the current iteration

def multiplyGivenNumbers():
 # if 0 is given as input, we ignore it
 product = 1
 while(True):
 x = input("Enter number (or 'done' to quit): ")
 if(x == "done"):
 break
 elif(int(x) == 0):
 continue
 product *= int(x)
 return product

print(multiplyGivenNumbers())

Introduction to Strings

Builtin Data Types

NoneType absence of value None

bool (boolean) Boolean values True, False

int (integer) integer values to

long large integer values all integers

float fractional values e.g. 3.14

complex complex values e.g. 1+5j

str (string) text e.g. “Hello World!”

list a list of values e.g. [2, 5, “hello”, “hi”]

Python name Description Values

�263 263 � 1

...

- Built-in string operations

- String representation in memory

Introduction to Strings

String representation in memory

Every type of data in a computer is represented by numbers
(binary numbers)

Each character in a string is a number.

print(ord(“a”))

print(chr(97))

print(“a” < “b”)

print(“a” < “A”)

97

a

True

False

print(“A” < “a”) True

print(ord(“b”)) 98

String representation in memory

Example

def toUpperCaseLetter(char):

Input: one character
Output: that character capitalized (if it is a letter).

return char

if (“a” <= char <= “z”):
return chr(ord(char) - (ord(“a”) - ord(“A”)))

- Built-in string operations

- String representation in memory

Introduction to Strings

String gluing

Concatenation

print(“Hello” + “World” + “!”)

print(“Hello” “World” “!”)

print(s “World” “!”)

s = “Hello”

ERROR

HelloWorld!

HelloWorld!

String gluing

Repetition

print(“SPAM!!!” * 20)

print(20 * “SPAM!!!”)

print(20 * “SPAM!!!” * 20)

String chopping

Indexing

G o T a r t a n s !

0 1 2 3 4 5 6 7 8 9 10

s = “Go Tartans!”

print(s[0])

print(s[5], s[length-1], s[3])

length = len(s)

expression that should
evaluate to an integer

G

r ! T

(length stores 11)

String chopping

Indexing

G o T a r t a n s !

0 1 2 3 4 5 6 7 8 9 10

s = “Go Tartans!”

print(s[-1])

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

!

print(s[len(s)]) INDEX ERROR

print(s[-11]) G

String chopping

s = “Go Tartans!”

Slicing

G o T a r t a n s !

0 1 2 3 4 5 6 7 8 9 10
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

print(s[3:7])

print(s[0:len(s)])
print(s[3:])
print(s[:1])
print(s[:])

Tart

Go Tartans!
Tartans!
G
Go Tartans!

print(s[3:len(s)]) Tartans!

String chopping

s = “Go Tartans!”

Slicing

G o T a r t a n s !

0 1 2 3 4 5 6 7 8 9 10
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

print(s[0:len(s):2])

print(s[::])

print(s[::-1])

print(s[len(s)-1:0:-1])

G atn!

Go Tartans!

print(s[len(s)-1:-1:-1])

!snatraT o

range is empty, so it prints nothing

!snatraT oG WEIRD!

print(s)

Strings are immutable!!!!!

s = “Go Tartans!”

Slicing

G o T a r t a n s !

0 1 2 3 4 5 6 7 8 9 10
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

s[3] = “t” ERROR

s = s[:3] + “t” + s[4:]

s += “ haha”

Worked! Why?

effectively same as s[3] = “t”

Go Tartans! haha

print(s) Go tartans! haha

The in operator

print(“h” in “hello”)

The in operator returns True or False.

In a for loop, we also have in. Not the same as above.

print(“hell” in “hello”)

print(“ll” in “hello”)

True

True

True

print(“H” in “hello”)

print(“” in “hello”) True

False

for char in “112”:
 print(char)

1
1
2

print(“k” not in “hello”) True

Example: getMonthName
Input: a number from 1 to 12
Output: first three letters of the corresponding
month.

e.g. 1 returns “Jan”, 2 returns “Feb”, etc...

def getMonthName(monthNum):
months = “JanFebMarAprMayJunJulAugSepOctNovDec”
pos = (monthNum - 1) * 3
return months[pos:pos+3]

Example: indexOf

def indexOf(c, s):
for index in range(len(s)):
 if (s[index] == c):
 return index
return -1

Input: a character c and a string s
Output: the index of the first occurence of c in s

(return -1 if c is not in s)

Example: flipBits

Input: a string s containing only 0s and 1s
Output: s with the 0s and 1s flipped.

def flipBits(s):
 result = ""
 for char in s:
 if (char == "0"): result += "1"
 else: result += "0"
 return result

Example: isPalindrome

Input: a string s
Output: True if s is a palindrome, False otherwise

Examples of palindromes: a, dad, hannah, civic

def isPalindrome(s):
 return s == s[::-1]

Example: isPalindrome

Input: a string s
Output: True if s is a palindrome, False otherwise

def isPalindrome(s):
 return s == reverseString(s)

def reverseString(s):
 return s[::-1]

This strategy is not recommended.
You create a new string, which is not necessary.

Examples of palindromes: a, dad, hannah, civic

Example: isPalindrome

Input: a string s
Output: True if s is a palindrome, False otherwise

def isPalindrome2(s):
 mid = len(s)//2
 for i in range(mid):
 if (s[i] != s[-1-i]): return False
 return True

This is a good way of doing it.

Examples of palindromes: a, dad, hannah, civic

Example: isPalindrome

Input: a string s
Output: True if s is a palindrome, False otherwise

def isPalindrome2(s):
 mid = len(s)//2
 for i in range(mid):
 if (s[i] != s[len(s)-1-i]): return False
 return True

Most programming languages
don’t allow negative indices.

Examples of palindromes: a, dad, hannah, civic

Example: isPalindrome

Input: a string s
Output: True if s is a palindrome, False otherwise

def isPalindrome3(s):
 while (len(s) > 1):
 if (s[0] != s[-1]): return False
 s = s[1:-1]
 return True

Even worse than the first one.

Examples of palindromes: a, dad, hannah, civic

