SAMS
Programming - Section C

Week 2 - Lecture 2:
More strings + Nested loops + Style

* kkkkkkk k%
* %k % * kkk kk %k
* Kk k% k% % * Kk k% k% %
* kkk k) %k * %k %
*kkkkkkkk*k *
* kkk k) %k * %k %
* Kk k% k% * Kk %k k%
* k% *kkk k)%
* *kkkkkkkk*k

July 12,2017

On the menu today

Wrap up strings

Nested loops

Style

Wrap up strings

String literals

X = “#FeelTheBern’a—r string literal

x = ‘#FeelTheBern’ single-quotes
x = ““#FeelTheBern™”’ triple single-quotes
X = “““4FeelTheBern™”” triple double-quotes

What are the differences between these?

String literals
Single-quotes and double-quotes work similarly.

print(“hello world”) hello world

print(‘hello world’) hello world
print(“Bernie said: “hello world”.”) Syntax error

print(‘Bernie said: “hello world”.”) Bernie said: “hello world”.

print(“Bernie said: ‘hello world’.”) Bernie said: ‘hello world’.

print(“Hello
World”) Syntax error

String literals

Use triple quotes for multi-line strings.

print(““““hello hello
WOI'ld”””) WOI"|C|

x = ““#FeelTheBern

',99

print(x) HFeelTheBern
!

~

_

newline
character

~

_J

|

What value does x really store! ‘#FeelTheBern\n!

String literals

\n newline

x = “#FeelTheBern\n!”

print(x)

x = “#FeelTheBern\t!”

print(x)

\t tab

HFeelTheBern
!

HFeelTheBern

String literals

Escape characters: use \

print(“The newline character 1s \n.”) The newline character is

print(““The newline character is \\n.”) The newline character is \n.

print(“He said: \"“hello world\”.”) He said: “hello world”.

String literals

Second functionality of \ : ignore newline

print(“““#FeelTheBern #FeelTheBern
!,99) !

I'),I;I,I)lt(#FeelTheBern \ HFeelTheBern |
print(‘#FeelTheBern \ HFEeelTheBern |

)

Built-in constants
import string
print(string.ascii_letters)
print(string.ascii_lowercase)
print(string.ascii_uppercase)
print(string.digits)
print(string.punctuation)
print(string.printable)
print(string.whitespace)

print(‘“\n” in string.whitespace)

Example
import string

def 1sLowercase(char):
return (char in string.ascii_lowercase)

def isWhitespace(char):
return (char in string.whitespace)

Built-in string methods

Method: a function applied “directly” on an object/data

Example: there is a string method called upper(),
it works like toUpper() from the HWV.

s = “hey you!”
print(upper(s)) ERROR: not used like a function.

print(s.upper()) HEY YOU!

s .upper () is basically like
upper(s) (if upper was a function)

Built-in string methods

Method: a function applied “directly” on an object/data

Example: there is a string method called count():

s = “hey hey you!”

print(s.count(“hey”)) 2

s.count (“hey”) is basically like
count(s, “hey”) (if count was a function)

Built-in string methods

Isupper
islower
isdigit
isalnum
isalpha
Isspace

upper
lower

replace
Strip
count
startswith

endswith
find

Built-in string methods

split and splitlines

names = “Alice Bob,Charlie, David”

for name in names.split(“,”)‘: Alice
print(name) Bob
Charlie
David
\/
returns [“Alice”,“Bob”,“Charlie”,“David”]

Built-in string methods

split and splitlines

s.splitlines() = s.split(“\n")

quotes = ““\

Dijkstra: Simplicity 1s prerequisite for reliability.

Knuth: If you optimize everything, you will always be unhappy.

Dijkstra: Perfecting oneself is as much unlearning as it is learning.

Knuth: Beware of bugs in the above code; I have only proved it correct, not tried it.

Dijkstra: Computer science is no more about computers than astronomy is about telescopes.
299999

for line in quotes.splitlines():
if (line.startswith(“Knuth’)):
print(line)

String formatting

team = “Steelers”
numSB =6
s = “The ” + team + * have won ” + numSB + * Super Bowls.”

String formatting

team = “Steelers”
numSB =6

s = “The ” + team + * have won ” + str(numSB) + *“ Super Bowls.”

team = “Steelers”
numSB =6

s = “The %s have won %d Super Bowls” % (team, numSB)

| |

string decimal

print(s) The Steelers have won 6 Super Bowls

Example: Cryptography

“loru23n8uladjkfb!#@”

“I will cut your throat” “loru23n8uladjkfb!#@”
l encryption decryption

“loru23n8uladjkfb!#@” “I will cut your throat”

Example: Caesar shift

Encrypt messages by shifting each letter
a certain number of places.

Example: shift by 3

abcdefghijklmnopgrstuvwxyz

HHHHHHHHHHHHH

defghijklmnopgrstuvwxyzabc

(similarly for capital letters)

“Dear Math, please grow up and solve your own problems.”

|

“Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv.”

Write functions to encrypt and decrypt messages.

Example: Caesar shift

def encrypt(message, shiftNum):

€¢99

result =
for char in message:
result += shift(char, shiftNum)

return result

def shift(c, shiftNum):
shiftNum %= 26
if (not c.isalpha()):
return c
alph = string.ascii_lower if (c.islower()) else string.ascii_upper

shiftedAlph = alph[shiftNum:] + alph[:shiftNum]
return shiftedAlph[alph.find(c)]

Example: Caesar shift

def shift2(c, shiftNum):
shiftNum %= 26
if ‘A’<=c<="°7"):
if (ord(c) + shiftNum > ord(‘Z’)):
return chr(ord(c) + shiftNum - 26)

else:
return chr(ord(c) + shiftNum)

elif (‘a’ <=c <= °7"):
if (ord(c) + shiftNum > ord(‘z’)):
return chr(ord(c) + shiftNum - 26)
else:
return chr(ord(c) + shiftNum) ~ Code repetition

else: Exercise: Rewrite
return c avoiding the repetition

Tangent: Private-Key Cryptography
Cryptography before WWi]I

Tangent: Private-Key Cryptography
Cryptography before WWi]I

“Hdfg%y@d2hSh2$&”

“I will cut your throat” “Hdfg%y@d2hSh2$&”

v v
“#dfg%y@d2hSh2$&” “I will cut your throat”

Tangent: Private-Key Cryptography

there must be a secure way of
exchanging the key

Tangent: Public-Key Cryptography
Cryptography after WWII

Tangent: Public-Key Cryptography
Cryptography after WWII

“Hdfg%y@d2hSh2$&”

“I will cut your throat” “Hdfg%y@d2hSh2$&”

‘o

v v
“#dfg%y@d2hSh2$&” “I will cut your throat”

Tangent: The factoring problem

If there is an efficient program to solve
the factoring problem

L

can break public-key crypto systems
used over the internet

Fun fact: Quantum computers can factor large numbers

efficiently!

Tangent:What is a quantum computer?

Information processing using quantum physics.

Nested loops

My first ever program

R R 2 R S R B R 2 R 2 S
SRASKAKAKAK K
R0 R S R S R 2 2 2 S
SRARAKAK KK
R 2 R S R 2 S
KKK

R R 2 R 2 S
KKK

KEKK

KKK

KK

X

Nested loops

Many situations require one loop inside another loop.

for y in range(10):
for x in range(8):
Body of the nested loop

Nested loops

Many situations require one loop inside another loop.

for y in range(10):
for x in range(8):
print(“Hello™)

How many times will “Hello” get printed?

Nested loops

Many situations require one loop inside another loop.

y | # iterations of inner loop
for y in range(4): 0 0
for x In range(y): | |
rint(“Hello”
print() , ,
3 3

How many times will “Hello” get printed?

Example: Draw a rectangle

Write a function that:
- Gets two integers, height and width as input
- Prints a rectangle with those dimensions

height = 4, width =3

k ok ok Repeat 4 times:
* ok ok - Print a row (3 stars)
k %k sk

Kok oK

Example: Draw a rectangle

Write a function that:
- Gets two integers, height and width as input
- Prints a rectangle with those dimensions

height = 4, width =3

k kK Repeat 4 times:
* ok K Repeat 3 times:
%k % - Print a single star

%k ok Skip a line

Example: Draw a rectangle

Write a function that:
- Gets two integers, height and width as input
- Prints a rectangle with those dimensions

height = 4, width =3

*®E K for row in range(4):
% ok ok for col in range(3):
% % % print(“*”, end=cc ”)

% k% print()

Example: Draw a rectangle

Write a function that:
- Gets two integers, height and width as input
- Prints a rectangle with those dimensions

height = 4, width =3

KAREOR def printRectangle(height, width):
ON for row In range(height):
for col in range(width):
% kK .
prlnt(“*,,, endz (14 ?9)
%k ok

print()

Nested loops

for y in range(S):
for x in range(8):

Body of the nested loop

«—<

A W NN — O

X —>

0

2 3456 7

Example

for y in range(4):

for x in range(S):

”)

print(“(%d , %d)” % (x,y)), end="

print()

X —>

Example

for y in range(4):
for x in range(y):
print(“(%d , %d)” % (x,y)), end="")
print()

\n

(0,1)
(0,2)
(0,3)

A~ A~
w N
N— N

A J A J

(2,3)

Example

for y in range(1, 10):
for x in range(1, 10):
print(y*x, end=" ")
print()

Multiplication table

for y in range(1, 10):
for x in range(1, 10):
print(y*x, end=" ")
print()

OV oONONLVM DWW —

(0 ol 0) TN N |8

3456789

6 8 10 12 14 16 I8

9 12 |15 18 21 24 27

12 16 20 24 28 32 36
O 15 20 25 30 35 40 45
2 18 24 30 36 42 48 54
4 21 28 35 42 49 56 63
6 24 32 40 48 56 64 72
8 27 36 45 54 63 72 8l

A trick to get rid of nested loops

Write a function for the inner loop.

Example: Write a function that:
- Gets an integer height as input
- Prints a right-angled triangle of that height

height = 5 def prmt.Stars(n):

for x in range(n):
e sk 5 3k 5K print(“*”, end=""’)
% 3k 3k sk

def printTriangle(height):

% 3k 3k . .

for x in range(height):
g printStars(7)
%

print()

A trick to get rid of nested loops

Write a function for the inner loop.

Example: Write a function that:
- Gets an integer height as input
- Prints a right-angled triangle of that height

height = 5 def prmt.Stars(n):

for x in range(n):
e sk 5 3k 5K print(“*”, end=""’)
% 3k 3k 3k

def printTriangle(height):

% 3k 3k . .

for x in range(height):
o printStars(height - x)
*

print()

A common nested loop

Input: a string s

Output: True if s contains a character more than once.
False otherwise.

def hasDuplicates(s):
for 1 in range(len(s)-1):
for j in range(i+1, len(s)):
if(s[1] == s[j]): return True
return False

Style

From lecture |

What you will learn in this course:

|. How to think like a computer scientist.

2. Principals of good programming.

3. Programming language: Python

From lecture |

2. Principals of good programming.

Is your code easy to read? easy to understand!?

Can it be reused easily! extended easily?

s it easy to fix errors (bugs)?

Are there redundancies in the code!?

Style: Summary

better style = better code

= a better worlid

Strong correlation between bad style and # bugs

Good style ---> saves money

Good style ---> saves lives

Style guides

- Official Python Style Guide

- Go gle Python Style Guide

- Our own Style Guide

Our Style Guidelines

Comments

Concise, clear, informative comments when needed.

Our Style Guidelines

Comments

Ownership Good

Name: Anil Ada
Andrew id: aada
Section: C

Our Style Guidelines

Comments

Before function bodies (if not obvious) Good

def foo():
“““This function returns the answer to the ultimate question
of life, the universe, and everything.’”
return 42

Our Style Guidelines

Comments

Before a logically connected block of code
Good

def foo():

Compute the distance between Earth and its moon.

Our Style Guidelines

Comments

Bad

x=1 #Assign 1 to x

Our Style Guidelines

Comments

Very Bad

x=1 # Assign 10 to x

Our Style Guidelines

Comments

“This function takes as input a thing that represents the
thing that measures how long it takes to go from

the center of a round circle to the outer edge of it. I
learned in elementary school that..........

The number PI does not really have anything
to do with apple pie, although I kind of wish it did
because it's really delicious. My grandma makes great pies.”

FACEPALM!
You're close to rock bottom when you get one
from a chimpanzee!!

Our Style Guidelines

Helper functions

Use helper functions liberally!!!

No function can contain more than 20 lines.
(25 lines for functions using graphics)

Our Style Guidelines

Test functions

Each function should have a corresponding
test function!!!

exceptions: graphics, functions with no returned value

Our Style Guidelines

Clarity

def abs(n):
return (n < 0)*(-n) + (n >= 0)*(n) Bad style!

def abs(n):
if (n < 0):
return -n
else:
return n

Our Style Guidelines

Meaningful variable/function hames

No more a, b, ¢, d, u, ww, pt, gr, abc

Use mixedCase.

Bad variable names

a thething

anonymous anilsucks

Good variable names

length degreesInFahrenheit

counter theMessageToTellAnilHeSucks

count(
countl
count?
count3
count4
countd
count6
count’/
countd
count9

Our Style Guidelines

“Numbered” variables

Use lists and/or loops

Our Style Guidelines

Magic numbers

Hides logic. Harder to debug.

def toUpperCaseLetter(c):
if (“a” <=c <=%2"):
return chr(ord(c) — » magic number
return c

Our Style Guidelines

Magic numbers

Hides logic. Harder to debug.

def shift(c, shiftNum):
shiftNum %:@ » magic humber
if (not c.isalpha()):
return c
alph = string.ascii_lower if (c.islower()) else string.ascii_upper

shifted_alph = alph[shiftNum:] + alph[:shiftNum]
return shifted_alph[alph.find(c)]

Our Style Guidelines

Magic numbers

Hides logic. Harder to debug.

def shift(c, shiftNum):
—P alphabetSize = 26
shiftNum %= alphabetSize
if (not c.isalpha()):
return c
alph = string.ascii_lower if (c.islower()) else string.ascii_upper

shifted_alph = alph[shiftNum:] + alph[:shiftNum]
return shifted_alph[alph.find(c)]

Our Style Guidelines

Formatting

- max 80 characters per line
- proper indentation (use 4 spaces, not tab)
- one or two blank lines between functions

- one blank line to separate logical sections

Our Style Guidelines
Others

Efficiency

Global variables

Duplicate code

Dead code

Meaningful User Interface (Ul)

Other guidelines as described in course notes

