SAMS
 Programming - Section C

Week 6 - Lecture I:
Monte-Carlo method

August 7, 2017

Origins of Probability

France, I 654

Let's bet:

I will roll a dice four times.
I win if I get a I.
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability

France, I 654

Hmm.
No one wants to take this bet anymore.
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability

France, I 654

New bet:
I will roll two dice, 24 times.
I win if I get double-I's.
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability

France, I 654

Hmm.
I keep losing money!
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability

France, I 654

"Chevalier de Méré" Antoine Gombaud

Alice and Bob are flipping a coin. Alice gets a point for heads.
Bob gets a point for tails.
First one to 4 points wins 100 francs.

Alice is ahead 3-2 when gendarmes arrive to break up the game.

How should they divide the stakes?

Origins of Probability

Pascal

Fermat

Probability Theory is born!

Monte Carlo Method

Estimating a quantity of interest (e.g. a probability) by simulating random experiments/trials.

General approach:

Run trials
In each trial, simulate event (e.g. coin toss, dice roll, etc)
Count \# successful trials
Estimate for probability $=\frac{\# \text { successful trials }}{\# \text { trials }}$

Law of Large Numbers:

As trials $\rightarrow>$ infinity, \quad estimate $\rightarrow>$ true probability

Odds of Méré winning

def mereOdds(): trials $=100 * 1000$
successes $=0$
for trial in range(trials): if(mereWins()):
successes $+=1$
return successes/trials
def mereWins(): for i in range(4): dieValue $=$ random.randint $(1,6)$ if(dieValue ==1): return True return False

Example 2: Birthday problem

- Let $\mathrm{n}=\#$ people in a room.
- Assume people have random birthdays (discard the year).
-What is the minimum n such that:
$\operatorname{Pr}[$ any 2 people share a birthday] >0.5
(ignore Feb 29)

What is the probability if $\mathrm{n}=366$?
What is the probability if $\mathrm{n}=1$?

Example 2: Birthday problem

def birthdayOdds(n):
trials $=10 * 1000$
successes $=0$
for trial in range(trials):
if trialSucceeds(n):
successes += 1
return successes / trials
def trialSucceeds(n):
seenBirthdays $=" "$
for person in range (n) :
birthday $=" \$$ + str(random.randint $(1,365))+" \$ "$
if (birthday in seenBirthdays): return True
else: seenBirthdays $+=$ birthday
return False

Example 3: Estimating Pi

Example 3: Estimating Pi

$\operatorname{Pr}[$ random coconut lands in circle] =
$\frac{\text { area of circle }}{\text { area of square }}=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}$

Example 3: Estimating Pi

def findPi(throws): \# throws = \# trials
throwsInCircle = 0 \# throwsInCircle = \# successes
for throw in range(throws):
$\mathrm{x}=$ random.uniform $(-1,+1)$
$y=\operatorname{random} . u n i f o r m(-1,+1)$
if (inUnitCircle (x, y)): throwsInCircle += 1
return $4 *$ (throwsInCircle/throws)
def inUnitCircle(x, y):
return $\left(\mathrm{x}^{* *} 2+\mathrm{y}^{* *} 2<=1\right)$

Example 4: Monty Hall problem

