
On the Non-Deterministic Communication

Complexity of Regular Languages

Anil Ada∗

Abstract

In this paper we study the non-deterministic communication complexity of
regular languages. We show that a regular language has either constant or at
least logarithmic non-deterministic communication complexity. We prove several
linear lower bounds which we know cover a wide range of regular languages with
linear complexity. Furthermore we find evidence that previous techniques (Tesson
and Thérien 2005) for proving linear lower bounds, for instance in deterministic
and probabilistic models, do not work in the non-deterministic setting.

1 Introduction

The notion of communication complexity was introduced by Yao [16] in light of its
applications to parallel computers. Following this seminal work, it has been shown to
have many more applications where the need for communication is not explicit and thus
has become the “Swiss Army knife” of complexity theory. These applications include
time/space lower bounds for VLSI chips [9], time/space tradeoffs for Turing Machines
[3], data structures [9], boolean circuit lower bounds [6, 8], pseudorandomness [3], sep-
aration of proof systems [4] and lower bounds on the size of polytopes representing
NP -complete problems [15].

It is an intriguing task to better understand the landscape of communication com-
plexity and thus other areas of complexity theory. A natural starting point is to com-
prehend the complexity of regular languages, which in some sense are the simplest
languages with respect to the usual time/space complexity framework. Perhaps sur-
prisingly, regular languages form a non-trivial case study with respect to communication
complexity. There are hard regular languages even in very powerful models of commu-
nication complexity. Furthermore, some of the very well-known and studied functions
in this area such as Disjointness and Inner Product are equivalent to regular languages
from a communication complexity perspective.

∗School of Computer Science, McGill University. aada@cs.mcgill.ca. Supported by the research
grants of Prof. Denis Thérien.

1

In [13], it was established that the class of regular languages having O(f) deter-
ministic communication complexity forms a language variety and so the question of the
communication complexity of regular languages has an algebraic answer. In a follow
up work [14], a complete algebraic characterization of the communication complexity
of regular languages was established in the deterministic, simultaneous, probabilistic,
simultaneous probabilistic and Modp-counting models. These results unmasked an in-
teresting complexity gap: In all of the above models, the complexity of a regular lan-
guage falls into one of four classes O(1), Θ(log log n), Θ(log n) or Θ(n). In contrast, we
note that for any increasing function f with 1 ≤ f ≤ n, it is possible to construct a
non-regular language with complexity Θ(f) for any of these models.

In this paper we are interested in the non-deterministic communication complexity of
regular languages. To get a similar characterization for the non-deterministic model, one
needs the notions of positive language varieties and ordered monoids. This is because
the syntactic monoid of a regular language does not distinguish between a language
and its complement. Differing from the models mentioned earlier, non-deterministic
complexity of a function and its complement may not be equal. So regular languages
having O(f) non-deterministic communication complexity do not form a variety but a
positive variety.

Adopting this refined approach, we take the first steps towards a complete classifi-
cation for the non-deterministic communication complexity of regular languages. We
identify the regular languages having constant non-deterministic complexity. We show
that if a regular language does not have constant complexity then it has Ω(log n) com-
plexity, revealing a complexity gap. We also obtain several linear lower bound results
which we know cover a wide range of regular languages having linear complexity. These
bounds point out sufficient conditions for not being in the positive variety Pol(Com),
providing us with some nice combinatorial intuition about this variety. Finally we find
evidence that previous techniques used in [14] for proving linear lower bounds, for in-
stance in deterministic and probabilistic models, do not work in the non-deterministic
setting.

Organization. In Sect. 2 and Sect. 3, we give the necessary background on
algebraic automata theory and communication complexity respectively. In Sect. 4, we
define the communication complexity of a regular language and a monoid. Furthermore,
we show that the non-deterministic communication complexity of regular languages
admits an algebraic characterization. Section 5 is devoted to the bounds we have
on the non-deterministic communication complexity of regular languages and ordered
monoids.

2 Algebraic Automata Theory

In this section we set some notation and recall the definitions we need from algebraic
automata theory. We refer the reader to [11] for further background with an emphasis
on the more general theory of ordered monoids.

2

A monoid (M ,·) is a set M together with an associative binary operation · and an
identity 1M ∈ M which satisfies 1M · m = m · 1M = m for any m ∈ M . An order
relation on a set S is a relation that is reflexive, anti-symmetric and transitive and it
is denoted by ≤. We say that ≤ is a stable order relation on a monoid M if for all
x, y, z ∈ M , x ≤ y implies zx ≤ zy and xz ≤ yz. An ordered monoid (M,≤M) is a
monoid M together with a stable order relation ≤M that is defined on M . A morphism
of ordered monoids Φ : (M,≤M) → (N,≤N) is a morphism between M and N that also
preserves the order relation, i.e. for all m, m′ ∈ M , m ≤M m′ implies Φ(m) ≤N Φ(m′).

A subset I ⊆ M is called an order ideal if for any y ∈ I, x ≤M y implies x ∈ I.
Every order ideal I in a finite monoid M has a generating set x1, . . . , xk such that
I = 〈x1, . . . , xk〉 := {y ∈ M : ∃xi with y ≤M xi}. We say that a language L ⊆ Σ∗

is recognized by an ordered monoid (M,≤M) if there exists a morphism of ordered
monoids Φ : (Σ∗, =) → (M,≤M) and an order ideal I ⊆ M such that L = Φ−1(I).

Define the syntactic congruence as follows: x ≡L y if for all u, v ∈ Σ∗ we have
uxv ∈ L iff uyv ∈ L. The syntactic monoid is the quotient monoid M(L) = Σ∗/ ≡L.
Let x �L y if for all u, v ∈ Σ∗, uyv ∈ L =⇒ uxv ∈ L. So x ≡L y if and only if
x �L y and y �L x. Now �L induces a well-defined stable order ≤L on M(L) given
by [x] ≤L [y] if and only if x �L y. The ordered monoid (M(L),≤L) is the syntactic
ordered monoid of L.

We say that an ordered monoid (N,≤N) divides an ordered monoid (M,≤M) if
there exists a surjective morphism of ordered monoids from a submonoid of (M,≤M)
onto (N,≤N). We know that (M(L),≤L) recognizes L and divides any other ordered
monoid that also recognizes L.

We say that a family of ordered monoids V is a variety of ordered monoids if it
is closed under division of ordered monoids and finite direct product. The order in
a finite direct product M1 × · · · × Mn is given by (m1, . . . , mn) ≤ (m′

1, . . . , m
′

n) iff
mi ≤ m′

i ∀i ∈ [n].
A class of regular languages is a function C that maps every alphabet Σ to a set of

regular languages in Σ∗. A class of languages C is called a positive variety of languages
if

(i) for any alphabet Σ, C(Σ) is closed under finite intersection and finite union,

(ii) C is closed under inverse morphisms: given any alphabets Σ and Γ, for any mor-
phism Φ : Σ∗ → Γ∗, if L ∈ C(Γ) then Φ−1(L) ∈ C(Σ),

(iii) C is closed under left and right quotients: for L ∈ C(Σ) and s ∈ Σ, we have
s−1L := {w ∈ L | sw ∈ L} and Ls−1 := {w ∈ L | ws ∈ L} are in C(Σ).

Given a variety of finite ordered monoids V, let V(Σ) be the set of languages over Σ
whose syntactic ordered monoid belongs to V. This is equivalent to saying that V(Σ)
is the set of languages over Σ that are recognized by an ordered monoid in V. The
Variety Theorem, originally due to Eilenberg [5] and adapted to the ordered case by
Pin [10], is as follows.

3

Theorem 2.1 (The Variety Theorem). V is a positive variety of languages and the
mapping V 7→ V defines a one to one correspondence between the varieties of finite
ordered monoids and the positive varieties of languages.

The polynomial closure of a set of languages L in Σ∗ is a family of languages such
that each of them is a finite union of L0a1L1 · · ·akLk, where k ≥ 0, ai ∈ Σ and Li ∈ L.
If V is a variety of languages, then we denote by Pol(V) the class of languages that is
the polynomial closure of V. We know that Pol(V) is a positive variety [12].

We say that the concatenation L0a1L1 · · ·akLk is unambiguous if all words x ∈
L0a1L1 · · ·akLk has a unique factorization x = w0a1w1 · · ·akwk with wi ∈ Li. We
denote by UPol(V) the variety of languages consisting of disjoint unions of unambiguous
concatenations L0a1L1 · · ·akLk with Li ∈ V (in some sense, there is only one witness for
x in L ∈ UPol(V)). Similarly we denote by ModpPol(V) the language variety generated
by the languages for which membership depends on the number of factorizations mod
p.

An element e ∈ M is called idempotent if e2 = e. For any finite M , there is a
number k > 0 such that for every element m ∈ M , mk is an idempotent. We call k an
exponent of M .

3 Communication Complexity

We present here a quick introduction to communication complexity but refer the reader
to the great book of Kushilevitz and Nisan [9] for further details.

In the deterministic model, two players, Alice and Bob, wish to compute a function
f : SnA × SnB → T where S and T are finite sets. Alice is given x ∈ SnA and Bob
y ∈ SnB and they collaborate in order to obtain f(x, y) by exchanging bits using a
common blackboard according to some predetermined communication protocol P. This
protocol determines whose turn it is to write, furthermore what a player writes is a
function of that player’s input and the information exchanged thus far. When the
protocol ends, its output P(x, y) ∈ T is a function of the blackboard’s content. We
say that P computes f if P(x, y) = f(x, y) for all x, y and define the cost of P as the
maximum number of bits exchanged for any input. The deterministic communication
complexity of f , denoted D(f) is the cost of the cheapest protocol computing f . We
will be interested in the complexity of functions f : S∗×S∗ → T and will thus consider
D(f) as a function from N × N to N and study its asymptotic behaviour.

In a non-deterministic communication protocol P another player, say God, having
access to both x and y first sends to Alice and Bob a proof π. Alice and Bob then follow
an ordinary deterministic protocol P ′ with output in {0, 1}. The protocol P accepts
the input (x, y) if and only if there is some proof π such that the output of the ensuing
deterministic protocol P ′ outputs 1. The cost of a non-deterministic protocol is the
maximum number of bits exchanged in the protocol (including the bits of π) for any
input (x, y). We denote the non-deterministic communication complexity of a language

4

L as N1(L). The co-non-deterministic communication complexity of L, denoted N0(L)
is the non-deterministic communication complexity of L’s complement.

Let PDISJ be the following promise problem. Alice gets a set x ⊆ [n] and Bob a
set y ⊆ [n] with the guarantee that |x ∩ y| ≤ 1 and PDISJ(x, y) = 1 if and only if
x ∩ y = ∅. One can show N1(PDISJ) = Ω(n) (see Section 2.2.3 of [1]). Define two
more problems: LT (x, y) = 1 iff x ≤ y when x and y are viewed as n-bit integers;
IPq(x, y) = 1 iff

∑n
i=1

xiyi ≡ 0 mod q. It is well known that both functions have Ω(n)
non-deterministic communication complexity.

Communication complexity classes were introduced in [2] in which an “efficient”
protocol was defined to have cost no more than poly-logarithmic, i.e. O(logc n) for a
constant c. Thus one obtains communication complexity classes analogous to P and NP
in the following way: P cc := {f |D(f) = polylog(n)}, NP cc := {f |N1(f) = polylog(n)}.

4 Algebraic Approach to Communication Complex-

ity

In general, we want to study the communication complexity of functions which do not
explicitly have two inputs. In the case of regular languages and ordered monoids we
use a form of worst-case partition definition. Formally, the communication complexity
of a pair (M, I) where M is a finite ordered monoid and I is an order ideal in M is the
communication complexity of the monoid evaluation problem corresponding to M and
I: Alice is given m1, m3, . . . , m2n−1 and Bob is given m2, m4, . . . , m2n such that each
mi ∈ M . They want to decide if the product m1m2 · · ·m2n is in I. The communication
complexity of M is the maximum complexity of (M, I) where I ranges over all order
ideals in M .

Similarly, the communication complexity of a regular language L ⊆ A∗ is the com-
munication complexity of the following problem: Alice and Bob respectively receive
a1, a3, . . . a2n−1 and a2, a4, . . . , a2n where each ai is either in A or is the neutral letter ǫ
and they want to determine whether a1a2 · · ·a2n belongs to L.

The following two lemmas establish the soundness of an algebraic approach to the
communication complexity of regular languages.

Lemma 4.1. Let L ⊆ A∗ be regular and M = M(L). Then N1(M) = Θ(N1(L)).

Proof. It is straightforward to show N1(L) = O(N1(M)). To show N1(M) = O(N1(L)),
we present a protocol for (M, I) where I = 〈i1, ..., ik〉 is some order ideal in M .

Let Φ be the accepting morphism. For each monoid element m, fix a word that is
in the preimage of m under Φ, and denote it by wm. Let Ya := {(u, v) : uav ∈ L}.
Recall that a �L b if for all u, v ∈ Σ∗, ubv ∈ L =⇒ uav ∈ L. So Φ(a) ≤L Φ(b) iff a �L

b iff Yb ⊆ Ya. For each Ya and Yb with Yb 6⊆ Ya, pick (u, v) such that (u, v) ∈ Yb but
(u, v) /∈ Ya. Let K be the set of all these (u, v). One can think of K as containing a
witness for Yb 6⊆ Ya for each such pair. Note that K is finite. Now pad each wm and

5

each word appearing in a pair in K with the neutral letter ǫ so that each of these words
have the same constant length.

Now the protocol is as follows. Suppose Alice is given ma
1, m

a
2, . . . , m

a
n and Bob

is given mb
1, m

b
2, . . . , m

b
n. For each ij they want to determine if ma

1m
b
1 · · ·m

a
nmb

n ≤L

ij. This is equivalent to determining if wma
1
mb

1
···ma

nmb
n
�L wij , which is equivalent to

wma
1
wmb

1

· · ·wma
n
wmb

n
�L wij . If this is not the case, Ywij

6⊆ Ywma
1
w

mb
1

...wma
n

w
mb

n

and so

there will be a witness of this in K, i.e. there exists (u, v) such that uwijv ∈ L
but uwma

1
wmb

1

· · ·wma
n
wmb

n
v /∈ L. If indeed wma

1
wmb

1

· · ·wma
n
wmb

n
�L wij then for each

(u, v) ∈ K with uwijv ∈ L, we will have uwma
1
wmb

1

· · ·wma
n
wmb

n
v ∈ L. Using the protocol

for L, Alice and Bob check which of the two cases is true.

In particular the non-deterministic complexity of an ordered monoid M is, up to a
constant, the maximal communication complexity of any regular language that it can
recognize.

Lemma 4.2. For any increasing f : N → N the class of monoids such that N1(M) is
O(f) forms a variety of ordered monoids.

Proof. The closure of this class under direct product is obvious. Suppose N ≺ M ,
so there is a surjective morphism φ from a submonoid M ′ of M onto N . Denote
by φ−1(n) a fixed element from the preimage of n. Let I be an order ideal in N .
A protocol for (N, I) is as follows. Alice is given na

1, n
a
2, . . . , n

a
t and Bob is given

nb
1, n

b
2, . . . , n

b
t . They want to decide if na

1n
b
1 . . . na

t n
b
t ∈ I. This is equivalent to deciding if

φ−1(na
1)φ

−1(nb
1) · · ·φ

−1(na
t)φ

−1(nb
t) ∈ φ−1(I). It is easy to see φ−1(I) is an order ideal in

M ′ so Alice and Bob can use the protocol for M ′ to decide if the above is true. There-
fore we have N1(N) ≤ N1(M ′). It is straightforward to check that N1(M ′) ≤ N1(M)
and so N1(N) ≤ N1(M) as required.

To compare the communication complexity of two languages K, L in different mod-
els, Babai et al. [2] defined rectangular reductions from K to L which are, intuitively,
reductions which can be computed privately by Alice and Bob without any communica-
tion cost. We give here a form of this definition which specifically suits our needs. Let
u = u1u2 · · ·uk be a word over M , i.e. u ∈ M∗. We denote by eval(u) the corresponding
monoid element, i.e. eval(u) = u1 · u2 · · ·uk.

Definition 4.3. Let f : {0, 1}n×{0, 1}n → {0, 1}, M a finite ordered monoid and I an
order ideal in M . A rectangular reduction of length t from f to (M, I) is a sequence of 2t
functions a1, b2, a3, . . . , a2t−1, b2t with ai : {0, 1}n → M and bi : {0, 1}n → M and such
that for every x, y ∈ {0, 1}n we have f(x, y) = 1 if and only if eval(a1(x)b2(y) · · · b2t(y))
is in I.

Such a reduction transforms an input (x, y) of the function f into a sequence of 2t
monoid elements m1, m2, . . . , m2t where the odd-indexed mi are obtained as a function
of x only and the even-indexed mi are a function of y.

6

We write f ≤t
r (M, I) to indicate that f has a rectangular reduction of length t

to (M, I). When t = O(n) we omit the superscript t. It should be clear that if f ≤t
r

(M, I) and f has communication complexity Ω(g(n)), then (M, I) has communication
complexity Ω(g(t−1(n))).

We will be interested in a special kind of rectangular reduction which we call a
local rectangular reduction. In a local rectangular reduction, Alice converts each bit
xi to a sequence of s monoid elements ma

i,1, m
a
i,2, . . . , m

a
i,s by applying a fixed function

a : {0, 1} → Ms. Similarly Bob converts each bit yi to a sequence of s monoid elements
mb

i,1, m
b
i,2, . . . , m

b
i,s by applying a fixed function b : {0, 1} → Ms. Then f(x, y) = 1 iff

eval(ma
1,1m

b
1,1 · · ·m

a
1,sm

b
1,s · · · · · ·m

a
n,1m

b
n,1 · · ·m

a
n,sm

b
n,s) ∈ I. The reduction transforms

an input (x, y) into a sequence of 2sn monoid elements. Let a(z)k denote the kth

coordinate of the tuple a(z). We specify this kind of local transformation with a 2× 2s
matrix:

a(0)1 b(0)1 a(0)2 b(0)2 · · · · · · a(0)s b(0)s

a(1)1 b(1)1 a(1)2 b(1)2 · · · · · · a(1)s b(1)s

It is convenient to see which words the transformation produces for all possible values
of xi and yi. For simplicity let us assume s is even.

xi yi corresponding word over M
0 0 a(0)1b(0)1 · · ·a(0)sb(0)s

0 1 a(0)1b(1)1a(0)2b(1)2 · · ·a(0)sb(1)s

1 0 a(1)1b(0)1a(1)2b(0)2 · · ·a(1)sb(1)s

1 1 a(1)1b(1)1 · · ·a(1)sb(1)s

5 Bounds for Regular Languages and Monoids

5.1 Classification Results

Lemma 5.1 ([14]). If M is commutative then D(M) = O(1) and thus N1(M) = O(1).

Lemma 5.2 (Adapted from [14]). If M is not commutative then for any order on M
we have N1(M) = Ω(log n).

Proof. Since M is not commutative, there must be a, b ∈ M such that ab 6= ba. There-
fore either ab 6≤M ba or ba 6≤M ab. W.l.o.g. assume ba 6≤M ab. Let I = 〈ab〉. We show
that LT ≤2n

r (M, I). Alice gets x and constructs a sequence of 2n monoid elements
in which a is in position x and 1M is in everywhere else. Bob gets y and constructs a
sequence of 2n monoid elements in which b is in position y and 1M is everywhere else.
If x ≤ y then the product of the monoid elements is ab which is in I. If x > y then the
product is ba which is not in I.

Denote by Com the positive language variety corresponding to the variety of com-
mutative monoids Com. The above two results show that regular languages that have
constant non-deterministic communication complexity are exactly those languages in
Com.

7

Lemma 5.3. If L ⊆ A∗ is a language of Pol(Com) then N1(L) = O(log n).

Proof. Suppose L is a union of t languages of the form L0a1L1 · · ·akLk. Alice and
Bob know beforehand the value of t and the structure of each of these t languages.
So a protocol for L is as follows. Assume Alice is given xa

1, . . . , x
a
n and Bob is given

xb
1, . . . , x

b
n. God communicates to Alice and Bob which of the t languages the word

xa
1x

b
1 · · ·x

a
nx

b
n resides in. This requires a constant number of bits to be communicated

since t is a constant. Then God communicates the positions of each ai. This requires
k log n bits of communication where k is a constant. The validity of the information
communicated by God can be checked by Alice and Bob by checking if the words in
between the ai’s belong to the right languages. Since these languages are in Com , this
can be done in constant communication. Therefore in total we require only O(log n)
communication.

From the above proof, we see that we can actually afford to communicate O(log n)
bits to check that the words between the ai’s belong to the corresponding language. In
other words, we could have Li ∈ Pol(Com). Note that this does not mean that this
protocol works for a strictly bigger class since Pol(Pol(Com)) = Pol(Com).

Denote by UP the subclass of NP in which the languages are accepted by a non-
deterministic Turing Machine having exactly one accepting path (or one witness) for
each string in the language. It is known that UP cc = P cc [15]. From [14] we know
that regular languages having O(log n) deterministic communication complexity are
exactly those languages in UPol(Com) and regular languages having O(log n) Modp

counting communication complexity are exactly those languages in ModpPol(Com).
Furthermore, it was shown that any regular language outside of UPol(Com) has lin-
ear deterministic complexity and any regular language outside of ModpPol(Com) has
linear Modp counting complexity. So with respect to regular languages, UP cc = P cc =
UPol(Com) and ModpP

cc = ModpPol(Com). Similarly we conjecture that with respect
to regular languages NP cc = Pol(Com) and that other regular languages have linear
non-deterministic complexity.

Conjecture 5.4. If L ⊆ Σ∗ is a regular language that is not in Pol(Com), then
N1(L) = Ω(n). Thus we have

N1(L) =

O(1) if and only if L ∈ Com;
Θ(log n) if and only if L ∈ Pol(Com) but not in Com;
Θ(n) otherwise.

In general, the gap between deterministic and non-deterministic communication
complexity of a function can be exponentially large. However, it has been shown that
the deterministic communication complexity of a function f is bounded above by the
product cN0(f)N1(f) for a constant c and that this bound is optimal [7]. The above
conjecture, together with the result of [14] imply the following much tighter relation for
regular languages.

8

Conjecture 5.5 (Corollary to Conjecture 5.4). If L is a regular language then D(L) =
max{N1(L), N0(L)}.

For any variety V, we have that Pol(V) ∩ co-Pol(V) = UPol(V) [11]. This implies
that N1(L) = O(log n) and N0(L) = O(log n) iff D(L) = O(logn), proving a special
case of the above corollary.

Conjecture 5.4 suggests that when faced with a non-deterministic communication
problem for regular languages, the players have three options. They can either follow
a trivial protocol that does not exploit the power of non-determinism or apply non-
determinism in the most natural way as for the complement of the functions Disjointness
and Equality. Otherwise the best protocol up to a constant factor is for one of the
players to send all of his/her bits to the other player, a protocol that works for any
function in any model. So with respect to regular languages, there is no “tricky” way
to apply non-determinism to obtain cleverly efficient protocols.

5.2 Regular Languages with Linear Complexity

To prove a linear lower bound for the regular languages outside of Pol(Com), we need
a convenient algebraic description for the syntactic monoids of these languages since in
most cases lower bound arguments rely on these algebraic properties. So an important
question that arises in this context is: What does it mean to be outside of Pol(Com)?
An algebraic description exists based on a result of [12] that describes the ordered
monoid variety corresponding to Pol(Com).

Lemma 5.6. Suppose L is not in Pol(Com) and M is the syntactic ordered monoid of
L with exponent ω. Then there exists u, v ∈ M∗ such that

(i) for any monoid M ′ ∈ Com and any morphism φ : M → M ′, we have φ(eval(u)) =
φ(eval(v)) and φ(eval(u)) = φ(eval(u2)),

(ii) eval(uωvuω) 6≤ eval(uω).

We now present the linear lower bound results. The proofs of the next two lemmas
can be adapted from [14] to the non-deterministic case using the following simple fact.

Proposition 5.7. Any stable order defined on a group G must be the trivial order
(equality).

Proof. Let a, b ∈ G such that a ≤ b. This means 1 ≤ a−1b =: g. Since 1 ≤ g, we have
1 ≤ g ≤ g2 ≤ . . . ≤ gk = 1 for some k. This implies 1 = g, i.e. a = b.

Lemma 5.8. If M is a non-commutative group then N1(M) = Ω(n).

We say that M is a Tq monoid if there exists idempotents e, f ∈ M such that
(ef)qe = e but (ef)re 6= e when q does not divide r.

Lemma 5.9. If M is a Tq monoid for q > 1 then N1(M) = Ω(n).

9

The next lemma captures regular languages that come close to the description of
Lemma 5.6. A word w is a shuffle of n words w1, . . . , wn if

w = w1,1w2,1 · · ·wn,1w1,2w2,2 · · ·wn,2 · · · · · ·w1,kw2,k · · ·wn,k

with k ≥ 0 and wi,1wi,2 · · ·wi,k = wi is a partition of wi into subwords for 1 ≤ i ≤ n.

Lemma 5.10. If M and u, v ∈ M∗ are such that (i) u = w1w2 for w1, w2 ∈ M∗, (ii) v
is a shuffle of w1 and w2, (iii) eval(u) is an idempotent, and (iv) eval(uvu) 6≤ eval(u),
then N1(M) = Ω(n).

Proof. We show that PDISJ ≤r (M, I) where I = 〈eval(u)〉. Since v is a shuffle of w1

and w2, there exists k ≥ 0 such that v = w1,1w2,1w1,2w2,2 · · ·w1,kw2,k. The reduction is
essentially local and is given by the following matrix when k = 3. The transformation
easily generalizes to any k.

w1 ǫ ǫ ǫ ǫ w2,1 ǫ w2,2 ǫ w2,3

w1,1 w2,1 w1,2 w2,2 w1,3 w2,3 ǫ ǫ ǫ ǫ

xi yi corresponding word
0 0 w1w2,1w2,2w2,3 = u
0 1 w1w2,1w2,2w2,3 = u
1 0 w1,1w1,2w1,3w2,1w2,2w2,3 = u
1 1 w1,1w2,1w1,2w2,2w1,3w2,3 = v

After x and y have been transformed into words, Alice prepends her word with u and
appends it with |u| many ǫ’s, where |u| denotes the length of the word u. Bob prepends
his word with |u| many ǫ’s and appends it with u. Let a(x) be the word Alice has and let
b(y) be the word Bob has after these transformations. If PDISJ(x, y) = 0, there exists i
such that xi = yi = 1. By the transformation, this means a(x)1b(x)1a(x)2b(x)2 · · ·a(x)sb(x)s

is of the form u · · ·uvu · · ·u and since eval(u) is idempotent,

eval(a(x)1b(x)1a(x)2b(x)2 · · ·a(x)sb(x)s) = eval(uvu) 6≤ eval(u).

If PDISJ(x, y) = 1, then by the transformation, a(x)1b(x)1 · · ·a(x)sb(x)s is of the
form u...u and so eval(a(x)1b(x)1a(x)2b(x)2 · · ·a(x)sb(x)s) = eval(u). Thus PDISJ ≤r

(M, 〈eval(u)〉).

The conditions of this lemma imply the conditions of Lemma 5.6: since eval(u) is
idempotent, for any monoid M ′ ∈ Com and any morphism φ : M → M ′, we have
φ(eval(u)) = φ(eval(u2)) and since v is a shuffle of w1 and w2 we have φ(eval(u)) =
φ(eval(v)). Also, since eval(u) is idempotent, eval(uω) = eval(u), and in this case
eval(uvu) 6≤ eval(u) is equivalent to eval(uωvuω) 6≤ eval(uω).

Lemma 5.10 gives us a corollary about the monoid BA+
2 which is defined to be

the syntactic ordered monoid of (ab)∗ ∪ a(ba)∗. The syntactic ordered monoid of the
complement of this language is BA−

2 . The unordered syntactic monoid is denoted by
BA2 and is known as the Brandt monoid.

10

Corollary 5.11. N1(BA+
2) = Ω(n).

Proof. It is easy to verify that BA+
2 is the monoid {a, b}∗ with the relations aa =

bb, aab = aa, baa = aa, aaa = a, aba = a, bab = b. All we need to know about the order
relation is that eval(aa) is greater than any other element. This can be derived from
the definition of the syntactic ordered monoid since for any w1 and w2, w1aaw2 is not
in L. So w1aaw2 ∈ L =⇒ w1xw2 ∈ L trivially holds for any word x. Let u = ab and
v = ba. These u and v satisfy the four conditions of Lemma 5.10. The last condition is
satisfied because eval(uvu) = eval(abbaab) = eval(aa) and eval(ab) 6= eval(aa). Thus
N1(BA+

2) = Ω(n).

Denote by U− the syntactic ordered monoid of the regular language (a∪b)∗aa(a∪b)∗.
The syntactic ordered monoid of the complement of this language is U+. The unordered
syntactic monoid is denoted by U . Observe that N1(U−) = O(logn) since all we need
to do is check if there are two consecutive a’s. One also easily sees that N1(BA−

2) =
O(logn). By an argument similar to the one for Corollary 5.11, one can show that
N1(U+) = Ω(n).

Combining the linear lower bound results we can conclude the following.

Theorem 5.12. If M is a Tq monoid for q > 1 or is divided by one of BA+
2 , U+ or a

non-commutative group, then N1(M) = Ω(n).

We underline the relevance of the above result by stating a theorem which we borrow
from [14].

Theorem 5.13 (implicit in [14]). If M is such that D(M) 6= O(log n) then M is either
a Tq monoid for some q > 1 or is divided by one of BA2, U or a non-commutative
group.

As a consequence, we know that if an ordered monoid M is such that N1(M) 6=
O(logn) then M is either a Tq monoid or is divided by one of BA+

2 , BA−

2 , U+, U− or
a non-commutative group.

As a corollary to Theorem 5.12 and Lemma 5.3 we have:

Corollary 5.14. If M(L) is a Tq monoid or is divided by one of BA+
2 , U+ or a non-

commutative group, then L is not in Pol(Com).

Consider the syntactic ordered monoid of the regular language recognized by the
automaton in Fig. 1(a). One can show that it does not contain a non-commutative
group, is not a Tq monoid and is not divided by BA+

2 nor U+. On the other hand, using
Lemma 5.10 with u = abbaa and v = aabab we can show that it requires linear non-
deterministic communication. Thus this lower bound is not achievable by previously
known methods and highlights the importance of Lemma 5.10.

11

(a) L4 ∈ Pol(GSol).

a

a, bba

1 2

3

(b) L5 ∈ Pol(GNil,2).

a, b

b

a
a

b

1 2

34

Figure 1: Two examples. The missing arrows go to an accepting sink state.

5.3 Limitation of Current Techniques

The regular language L5 accepted by the automaton in Fig. 1(b) is a concrete example
of a language not in Pol(Com) and where all our techniques fail. In particular, it
shows that the conditions in Lemma 5.10 do not cover every regular language outside
of Pol(Com). We know that L5 lies in Pol(GNil,2) where GNil,2 denotes the variety of
languages whose syntactic monoid is a nilpotent group of class 2. These groups are
“almost” commutative so L5 in some sense comes close to being in Pol(Com).

For the deterministic and probabilistic models where PDISJ is a hard function,
one can observe that all the linear lower bounds obtained in [14] go through a local
rectangular reduction from PDISJ since PDISJ reduces both to Disjointness and
Inner Product. One might hope to obtain all the non-deterministic lower bounds in
this manner as well. Given Lemma 5.6, one would want a local reduction of the form

xi yi corresponding word
0 0 uω

0 1 uω

1 0 uω

1 1 v

where u and v satisfy the conditions of Lemma 5.6.

Theorem 5.15. There is no local reduction from PDISJ to L5 as described above.

Proof. Since uω is an idempotent, it must induce a state transition function in which
one of the following holds.

1. Every state is sent to the sink state.

2. One state, say state s, is sent to itself and every other state is sent to the sink
state.

3. Two states are sent to themselves and every other state is sent to the sink state.

4. More than two states are sent to themselves.

12

We now show that none of the above can occur. Observe that it cannot be the case
that uω is a partial identity on more than two states so case 4 is eliminated.

If uω satisfies condition 2, then we claim that we cannot have eval(uωvuω) �
eval(uω). To get a contradiction suppose this is true. Then there exists w1, w2 such
that w1u

ωw2 ∈ L and w1u
ωvuωw2 /∈ L. Since the latter is true, it must be the case that

w1 takes state 1 to s and w2 must take s to a state other than the sink state. These w1

and w2 do not satisfy w1u
ωw2 ∈ L, so we get a contradiction. This shows we cannot

have condition 2.
Similar to the above, one can show that uω cannot satisfy condition 1, which leaves

us with condition 3. This means uω is either (abab)k or (baba)k for some k > 0. We
assume it is (abab)k. The argument for (baba)k is very similar.

Given uω = (abab)k, and the fact that we want to satisfy eval(uωvuω) � eval(uω),
one can show that the state transition function induced by v must be one of the fol-
lowing.

1. State 1 is sent to 3 and any other state is sent to the sink state.

2. State 3 is sent to 1 and any other state is sent to the sink state.

3. State 1 is sent to 3, 3 is sent to 1 and any other state is sent to the sink state.

Suppose v satisfies condition 1.
Case 1: v = (ab)2t−1 for t > 0. Consider the matrix representation of the local reduction.
In this matrix A, we count the parity of the a’s in two ways and get a contradiction. First
we count it by looking at the rows. The first row must produce the word uω = (abab)k

and the second row must produce the word v = (ab)2t−1 so in total we have odd
number of a’s. Now we count the parity of a’s by looking at A1,1A2,2A1,3A2,4 . . . and
A2,1A1,2A2,3A1,4 Both of these must produce the word (abab)k so in total we must
have an even number of a’s.
Case 2: v = (ab)2tbb . . . for t ≥ 0 (i.e. the prefix of v is of the form (ab)2tbb). Let c be
the column where we find the second b in the second row. Give value 1 to entries of
A which are a and give value -1 to entries of b. Other entries (the ǫ’s) get value 0. In
terms of these values we have

c
∑

i=1

A2,i = −2

and
c

∑

i=1

A1,i ∈ {0, 1}.

Adding the two sums, we get a negative value. Now we count the same total in a
different order. Assuming c is even we have

c/2
∑

i=1

A1,2i−1 +

c/2
∑

i=1

A2,2i ∈ {0, 1}

13

and
c/2
∑

i=1

A1,2i +

c/2
∑

i=1

A2,2i−1 ∈ {0, 1}.

The total is positive. This is a contradiction.
Case 3: v = (ab)2t−1a(aa)2rb . . . for t, r > 0. Similar argument as above.

The same ideas show that v cannot satisfy neither conditions 2 nor 3.

Acknowledgements

The author gratefully acknowledges Pascal Tesson and Denis Thérien for introducing
him to the problem and for very insightful discussions. We also thank Jean-Eric Pin
whose valuable input has been acquired through Pascal Tesson.

References

[1] A. Ada. Non-Deterministic Communication Complexity of Regular Languages.
ArXiv e-prints, Jan. 2008.

[2] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complex-
ity theory (preliminary version). In FOCS ’86: Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, pages 337–347, 1986.

[3] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom genera-
tors for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232,
1992.

[4] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovasz–Schrijver systems
and beyond follow from multiparty communication complexity. SIAM Journal on
Computing, 37(3):845–869, 2007.

[5] S. Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., Orlando,
FL, USA, 1974.

[6] V. Grolmusz. Separating the communication complexities of MOD m and MOD p
circuits. In IEEE Symposium on Foundations of Computer Science, pages 278–287,
1992.

[7] B. Halstenberg and R. Reischuk. On different modes of communication. In STOC
’88: Proceedings of the twentieth annual ACM symposium on Theory of computing,
pages 162–172, New York, NY, USA, 1988. ACM.

[8] J. H̊astad and M. Goldmann. On the power of small-depth threshold circuits.
Computational Complexity, 1:113–129, 1991.

14

[9] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[10] J.-E. Pin. A variety theorem without complementation. Russian Mathematics
(Izvestija vuzov.Matematika), 39:80–90, 1995.

[11] J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Hand-
book of formal languages, volume 1, chapter 10, pages 679–746. Springer, 1997.

[12] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory
Comput. Systems, 30:383–422, 1997.

[13] J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach to commu-
nication complexity. In ICALP ’98: Proceedings of the 25th International Col-
loquium on Automata, Languages and Programming, pages 29–40, London, UK,
1998. Springer-Verlag.

[14] P. Tesson and D. Thérien. Complete classifications for the communication com-
plexity of regular languages. Theory Comput. Syst., 38(2):135–159, 2005.

[15] M. Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, Dec. 1991.

[16] A. C.-C. Yao. Some complexity questions related to distributive computing (prelim-
inary report). In STOC ’79: Proceedings of the eleventh annual ACM symposium
on Theory of computing, pages 209–213, New York, NY, USA, 1979. ACM Press.

15

